태초에 하나님이 천지를 창조하시니라 (창세기 1:1)

노아 홍수 후퇴기에 형성된 아시아 중남부의 판상 자갈층 : 홍수/홍수 후 경계는 신생대 후기일 가능성이 높다.

노아 홍수 후퇴기에 형성된 아시아 중남부의 판상 자갈층 

: 홍수/홍수 후 경계는 신생대 후기일 가능성이 높다. 

(Retreating Stage formation of gravel sheets in south-central Asia)


    높은 고도에 남아있는 침식 잔재물들은 빠르게 일어났던, 대륙 넓이의 침식(continent-wide erosion)을 가리키며, 이러한 지형은 노아 홍수의 후퇴기(Retreating Stage)와 일치한다. 홍수 물이 대륙으로부터 물러가면서, 대륙을 침식시키는 동안, 저항성이 있는 암석들은 북미 대륙에서 보고했던 것처럼 장거리로 운반되었다. 이러한 북미 대륙과 유사한, 굵은 자갈들의 운반 패턴은 아시아 중부와 남부의 산들에서도 분명하게 관측되고 있다. 이러한 지역으로는, 히말라야 산맥의 남쪽, 티베트 고원 북쪽, 텐샨 산맥 주변, 자그로스 산맥의 남서쪽, 쓰촨분지의 서쪽 가장자리에 있는 티베트 고원의 동쪽 등이 그러한 지역이다. 솟아올랐던(융기됐던) 아시아 중남부의 산들에서 흘러내려온 특징적인 굵은 자갈들은 대홍수 후퇴기에서 가장 잘 해석된다. 이것은 홍수/홍수 후 경계가 이 지역에서는, 동일과정설적 시간 틀로 매우 늦은 신생대 후기였음을 의미한다.



    노아 홍수의 후퇴기 동안, 대륙과 산들이 홍수물 위로 솟아오르는 동안, 대양분지와 계곡들은 가라앉았다. 이것은 홍수 물이 대륙 밖으로 물러가는 원인이 되었다.(시편 104:6~9).[1, 2] 홍수 후퇴기 동안 대륙 위를 흘러가던 물은 대륙이 상승함에 따라 처음에는 판상 침식(sheet erosion)을 일으켰다. 이것은 점진적으로 변했는데, 먼저 높은 고도에서 시작하여, 점차 수로화 된 흐름(channelized flow)으로 바뀌어졌다. 그 수로는 처음에는 비교적 넓었고(예로 폭 75km 정도), 대홍수가 끝날 무렵에는 비교적 좁아졌다(폭 2km 정도). 노아홍수 150일에서 371일 사이에 발생한, 이러한 지표를 흘렀던 유거수(runoff)에 대한 풍부한 지형학적 증거들이 있다.[3] 그러나 동일과정설적 과학자들은 그러한 모습들을 설명하기 매우 어려워하고 있다.[4]

홍수 후퇴기에 대륙적 침식이 일어났었다는 증거들은 점점 더 많이 쌓여져가고 있는 중이다. 대륙적 침식으로 남겨진 퇴적암의 대부분은 노아홍수의 초기인 150일 이전의, 범람기 동안에 퇴적되었을 가능성이 크다.

대륙에서 홍수 물이 물러가는 사건 동안에, 평균 두께 2,500~5,000m로 평가되는 퇴적지층이 전체 콜로라도 고원에서 침식되었다.[5] 이것은 또한 전 세계의 대륙들에서 보여지는 다른 많은 지형학적 증거들과도 일치한다.[6] 홍수 후퇴기에 엄청난 규모의 대륙적 침식이 일어났었다는 증거들은 점점 더 많이 쌓여져가고 있는 중이다. 대륙적 침식으로 남겨진 퇴적암의 대부분은 노아홍수의 초기인 150일 이전의, 범람기 동안에 퇴적되었던 것들이다. 후퇴기 동안에 침식된 퇴적물은 대륙주변부에서 두터운 퇴적지층을 형성하며, 재퇴적 되었다.


빠르게 진행된 대륙들의 침식

홍수 물은 자주 침식 잔재물(erosional remnants)들을 남겼다(그림 1). 빙하 호수였던 미졸라 호수(Lake Missoula)의 격변적 붕괴는 많은 침식 잔재물들을 남겼다.[7] 그것들은 그랜드 쿨리(Grand Coulee) 상류 지역에 있는 스팀보트 록(Steamboat rock, 증기선 바위)이나(그림 2), 미국 워싱톤주 마른 폭포(Dry Falls)에서 볼 수 있는 우마틸라 록(Umatilla Rock)과 같은 것들이다.[7] 그러므로 침식이 수백만 년에 걸쳐서 느리게 일어났다면, 대륙에 남아있는 많은 침식 잔재물들은 남아있을 수 없기 때문에, 대륙 침식은 빠르게 일어났음에 틀림없다.

더욱이, 그러한 침식 잔재물들은 동일과정설적 조건 하에서도 수백만 년 동안 유지되지 못할 것이다. 왜냐하면 수직면은 수평면보다 훨씬 빨리 침식되기 때문이다. 파자글리아(Pazzaglia)는 말했다. ”침식 속도는 경사면이 가파른 곳에서 가장 빠르다.”[8] 트위달(Twidale)은 그러한 말을 확인시켜주고 있었다 :

”... 새로운 지표면에서 잘려진 골짜기는 상대적으로 깊고 가파른 경향이 있다... 그러나 시간이 지나면 골짜기는 넓어질 것이고, 결국 좁은 V자 모양의 단면이 생길 것으로 예측하는 것이 안전하다.”[9]

미국 와이오밍의 악마의 탑(Devils Tower, 데블스 타워)은 전형적인 예이다. 주장되는 것처럼, 악마의 탑이 4천만 년 전에 형성되었다면, 그 장구한 시간 동안, 결빙과 해빙의 반복으로 인해 부서져 내린 돌들이 아래쪽에 엄청난 량으로 쌓여 있어야만 한다. 그러나 그렇지 않기 때문에, 물러가던 홍수 물에 의한 빠른 침식이 보다 직접적인 설명이 될 수 있다.[10]

그림 1. 남아프리카의 한 홍수 후에 남겨진 침식 잔재물(두 화살표).


그림 2. 스팀보트 록(Steamboat Rock)은 미국 워싱턴 주의 그랜드 쿨리(Grand Coulee) 상류에 있는 미졸라 호수(Lake Missoula)의 격변적 붕괴 시에 남겨진 2.5km2, 250m 높이의 침식 잔재물이다.


단단한 돌들의 장거리 운반

홍수 후퇴기 동안, 저항성이 강한 암석들은 침식에 견뎠고, 매우 먼 거리로 운반되었다. 이들 침식된 암석들이 지표면에서 발견되는 곳에서, 그것들은 ‘굵은 자갈(coarse gravel)’로 불려진다. (이것은 자갈에서부터 거력 크기의 암석들을 일컫는 일반적 용어이다). 저항성이 적은 암석들은 운반 도중에 분쇄되어, 퇴적 지역, 특히 대륙주변부(continental margins)를 따라 내려가면서 미세한 입자의 퇴적물로 퇴적되었다. 암석이 침식되어 물 흐름에 의해 아래쪽으로 운반되면서, 암석들은 둥글게 되었고, 크기는 줄어들었다. 물 흐름이 대대적이었던, 가령 저탁류(turbidity current), 토석류(debris flow), 고농도수류(hyperconcentrated flow) 등과 같은 물 흐름의 경우에, 굵은 자갈과 미세한 입자의 퇴적물이 때때로 섞여있을 수도 있었다.

암석들의 장거리 운반은 북미 대륙에서 잘 기록되어있다. 본인과 존 허겐라더(John Hergenrather), 피터 클레브버그(Peter Klevberg)는 로키산맥 서부의 근원(출처)으로부터, 동쪽으로 약 1,200km, 서쪽으로 약 650km의 매우 먼 곳까지, 주로 표층 자갈로서, 꽤 둥근 규암(well-rounded quartzite rocks)들이 운반되었다는 것을 보여주었다.[11~15] 중부 텍사스에 있는 강들 사이에 있는 노두들에 대한 조사로부터, 오가랄라 자갈층(Ogallala gravel)은 뉴멕시코 중부의 가장 가까운 근원으로부터 약 800km 가량 운반되어왔다.[16-19] 애팔래치아 산맥에서 침식된 처트(chert), 석영, 규암 등의 저항성 암석들은 서쪽, 남쪽, 동쪽의 주변 저지대로 장거리 운반되었다. 일부 처트 자갈은 애팔래치아 산맥 서쪽으로 800km까지 운반되었으며, 일부 규암 자갈은 애팔래치아 근원으로부터 1,000km 남쪽의 플로리다에서 발견되었다.[20, 21] 미국의 다른 많은 지역들도 저항성 암석들의 장거리 운반을 보여주고 있다. 이러한 암석들의 장거리 운반은, 애리조나와 몬태나 사이의 로키 산맥에서[22], 아리조나 남서부의 낮은 지대에서부터 콜로라도 고원 남서부의 가장 높은 지형까지[23], 유타주와 콜로라도주의 유인타 산맥 주변부 등에서 볼 수 있다.[24]


아시아 중부와 남부에서 발견되는 유사한 패턴

나는 개인적으로 미국의 주요 산맥들을 연구해왔으며, 노아 홍수가 전 지구적 홍수였기 때문에, 다른 많은 지역에서도 저항성 있는 암석들의 장거리 운반과 유사한 패턴이 발견될 것을 기대한다. 그러나 나는 또한 홍수의 많은 변수들에 의해서 야기됐던, 상당한 위치별 특성 차이를 예상할 수 있다. 즉, 암석 유형, 물 흐름 상황, 판구조의 차이, 지형적 차이... 등이다. 이것은 아시아 중부 및 남부의 산들에서 자갈과 돌들의 장거리 운반에 관한 문헌과 관련하여 우리가 발견한 것이다(그림 3).

그림 3. 주요한 지형적 특성을 보여주는 아시아 중부와 남부.


히말라야 남부의 자갈 패턴

히말라야 산맥은 세계에서 가장 높은 산맥이다. 인도 아대륙이 아시아 대륙과 충돌하면서, 지각은 두꺼워졌고, 높게 융기하게 되었다는 것이다.[25] 이러한 충돌은 대략 6천5백만 년 전에 (동일과정설 시간 틀로 신생대의 시작) 출발했고, 오늘날까지도 계속되고 있다고 말해진다.[26]

히말라야 산맥 주변에 이어져 있는 판상 역암층(sheet of conglomerate)은 산으로부터 흘러내려왔다. 그것은 시와리크 지층(Siwalik Formation)이라고 불리고, 동일과정설적 시간 틀로 신생대 후기로 추정되고 있다. 시와리크 지층 아래에는 때때로 수 km 두께의 신생대 퇴적물이 쌓여있으며, 히말라야 산맥에서 가장 가까우며, 가장 두꺼운 퇴적층이다. 이 지층은 앞쪽의 깊은 분지의 북쪽 가장자리를 따라 퇴적되었다. 그곳에는 오늘날 갠지스 강이 동-남동 방향으로 흐르고 있다. 가장 오래된 '화석 유인원'으로 주장됐던 라마피테쿠스(Ramapithicus)의 뼈들이 발견됐던 곳이 시와리크 지층이다.[27] 그러나 후에 더 많은 화석들이 발견되면서, 라마피테쿠스는 단지 멸종된 원숭이라는 것이 밝혀졌다.[28]

시와리크 지층은 하층부, 중층부, 상층부로 나뉘어진다. 고도가 증가함에 따라, 퇴적 입자 크기가 일반적으로 증가한다. 하층부와 대부분의 중층부는 셰일, 이암, 실트스톤, 사암이 교대로 쌓여져 있다. 중층부에는 500m 두께에 이르는 역암층의 단면도 가지고 있으며, 상층부는 약 1,000m 두께의 역암들로 대부분 이루어져 있다.

그 지층의 두께는 수천 미터일 수 있다. 히말라야 서부에서 가까운 한 단면은 두께가 3,400m이다.[29] 네팔 동부의 시와리크 지층의 상층부 역암층은 1,700m 두께에 이르며[30], 일반적으로 물의 작용으로 돌들은 둥글게 되어있다.

수집된 증거들은, 고대의 물 흐름 방향이 히말라야 산맥과 평행, 직각의 둘 다 이루었다는 것을 가리킨다.[31] 그러므로 고대의 물 흐름(paleocurrent, 고수류)은 산들에서 흘러 내려왔다가, 산들과 평행하게 흘렀을 가능성이 가장 높다. 시와리크 지층은 히말라야 산맥이 융기되는 동안에 퇴적되었다.[32, 33] 히말라야 산맥에는 엄청난 침식이 발생되어 있는데, 어떤 곳은 약 10km 가량의 침식이 일어난 것으로 평가되고 있다. 흘러내린 토석류들은 시와리크 지층에 포함되었는데, 이것은 간혹 소히말라야(Lesser Himalayas)에서 오버트러스트(overthrust) 되었다. 이것은 그 퇴적이 동구조(syntectonic, 동시에 형성된 구조)였다는 것을 가리킨다.[34] 따라서 히말라야의 주요 융기는 신생대 후기에 있었던 것으로 생각된다.

그림 4. 미국 워싱턴 주 세인트 헬렌산(Mount St. Helens) 근처의 투틀 강(Toutle River) 북쪽 분기 지점의 망상하천(braided river).


동일과정론자들은 이들 모든 역암들이 히말라야 산맥에서 흘러나온 망상하천 또는 수계망으로부터 왔다고 주장한다.[35, 36] 그러나 시와리크 지층의 상층부는 수백 미터 두께로서, 히말라야의 남쪽 가장자리를 따라 하나의 연속적인 판(sheet)으로 확장되어 있다. 이것은 망상하천이 이들 역암층을 퇴적시켰을 수 없었음을 가리킨다. 망상하천들은 점토에서 자갈까지 다양한 구성 성분의 퇴적물을, 급격한 층 변화를 보여주며 퇴적시킨다.(그림 4).


티베트 고원 북쪽의 자갈들

티베트 고원(Tibetan Plateau)은 세계에서 가장 높은 고원이며, 대부분이 5,000m가 넘는다. 티베트 고원은 약 700,000km2로 텍사스 주 정도의 크기이다. 이 고원은 신생대에 인도와 아시아 대륙의 충돌로 인한 두꺼운 지각에 의해 부풀어 오른 것으로 추정되고 있다. 또한 티베트 고원은 상당한 고도에 남아있는 거대한 침식 표면이다. 그러나 심하게 잘려졌다.[37, 38] 티베트 고원의 북쪽은 상대적으로 낮고, 변형되지 않은 타림분지(Tarim Basin)이다.[39]

티베트 고원의 북쪽에는 (타림 분지의 산기슭) 두터운 신생대 퇴적암이 퇴적되어 있다. 그 꼭대기는 시와리크 지층과 유사한 두꺼운 판상의 역암층이다.[39, 40] 자갈층은 타림 분지의 중심을 향하는 북동쪽으로 가면서 엷어진다. 암석들은 일반적으로 둥근 형태로, 어떤 것은 2m 보다도 크며, 지층의 최대 두께는 약 3,000m에 이른다. 그것은 시유 지층(Xiyu Formation)이라 불려지며, 텐샨 산맥(Tian Shan Mountains)에 인접한 타림분지의 북쪽 가장자리를 따라 또한 발견되었다. 시유 지층 위에는 고비 자갈(Gobi gravels)로 불려지는, 일부 커다란 자갈들이 있다. 고비 자갈은 중국의 먼 동쪽으로까지 이어져 있다.

신생대 후기에 티베트 고원이 융기하고, 타림분지가 가라앉았을 때, 토석류의 흐름에 의해서 많은 물질들이 흘러 나왔다고 생각하고 있다. 산에 가까운 자갈층은 퇴적된 후에 습곡되었고, 융기되었다. 이것은 시유 지층이 퇴적되는 동안과 이후에 계속 융기되고 있었음을 가리킨다. 그러나 티베트 고원의 융기 메커니즘과 시기는 여전히 논란 중이다.


텐샨 산맥에서 흘러내렸던 자갈들

중국어로 '천상의 산(celestial mountains)'을 의미하는 텐샨 산맥(Tian Shan Mountains)은 중앙 아시아에서 동서로 약 2,500km에 걸쳐있다(그림 3). 산맥은 타림분지의 북쪽에 있으며, 북서쪽의 중국을 포함하여 여러 나라와 국경을 접하고 있다. 텐샨 산맥은 최대 높이가 7,439m에 이르는 판내 산맥(intraplate mountains)이다. 판내 산맥 임에도 불구하고, 그것은 인도와의 충돌에 참여한 것으로 믿어지며, 텐샨 산맥은 충돌 지역에서 약 1,700km 떨어져 있기 때문에, 인도와의 충돌로 인해 텐샨 산맥은 약 10% 정도 짧아진 것으로 예측됐었다. 그러나 최근의 GPS 수치에 따르면, 중앙 아시아의 단축(shortening) 또는 판 집중(plate convergence)의 약 50%가 텐샨 산맥에서 발생했음을 나타냈다.[41] 이 비정상적인 결과는 아시아와 인도의 충돌이 주장된 것보다 아시아 중남부에서 더 많이 발생했음을 가리킨다.

텐샨 산맥 주변 모든 곳에는, 히말라야 산맥과 티베트 고원 주변에서 발견되는 것과 동일한 자갈층들이 연속적으로 놓여있다. 이것은 또한 시유 지층(Xiyu Formation)이라고도 불리며, 중앙 아시아 전역에 널리 퍼져있다.[42] 북쪽 타림분지와 동쪽 중가분지(Junggar Basin)를 포함한, 텐샨 산맥 주변의 자갈들은 시와리크 역암층과 티베트 고원 북쪽의 자갈층과 같은, 수 km 두께의 신생대 지층 꼭대기에 놓여있다.[43] 자갈층은 일부 지역에서는 두께가 3,000m 이상이고, 산맥 앞쪽에서 멀어지면서 얇아진다.[44, 45] 돌들은 신생대 말의 융기 동안에 산맥에서부터 유래한 강력한 하천들에 의해서 흘러나온 것으로, 그래서 산맥으로부터 멀어지면서 더 작아지고 둥글게 되었다고 말해지고 있다. 한 번 퇴적되었던, 산맥 앞쪽 근처의 자갈들은 산맥의 구조 운동에 휩쓸렸고, 습곡됐고, 융기됐고, 산 앞에서 오버트러스트(overthrust) 되었다.[46, 47]

시유 지층은 신생대 제4기에서 중신세(Miocene)로 연대가 평가된다. 그러나 그 연대는 여러 번 바뀌었다.[48] 또한 다른 지역에서는 다른 연대들로 평가되었다. 연대 추정이 불확실한 한 가지 이유는 지층 내에 화석들이 거의 없다는 것이다. 이것은 역암층이기 때문에 이해가 될 수 있다. 그러나 소수의 화석들이 발견되었다. 한 지역의 시유 지층에서 말(horse) 화석이 발견되었는데, 선신세~홍적세(Plio-Pleistocene)로 연대가 평가되었다.[44] 이제 연구자들은 더 오래된 연대를 받아들이고 있는 듯하다. 그들은 시유 지층을 중신세(Miocene) 쪽으로 기울어지고 있다.

그러나, 중신세라는 연대는 시유 지층을 형성했던 침식의 원인으로써 기후 변화를 배제시키고 있었다. 왜냐하면 빙하와 간빙기를 일으켰던 커다란 기후 변화는 약 250만 년 전으로 추정하는 선신세(Pliocene) 말에는 시작됐다고 말해지지 않기 때문이다. 그래서 자갈들은 이제 신생대 후기의 구조적 융기 동안에 흘러내려온 것으로 믿어지고 있다.


자그로스 산맥에서 흘러내렸던 자갈들

아시아 중부와 남부에 있는 다른 산들의 기저부에도, 두텁고 광범위한 커다란 자갈들의 패턴이 존재하지만, 내가 자세한 정보를 갖고 있지 않기 때문에, 몇 가지 관측만을 지적할 것이다.

이란 남서부의 자그로스 산맥(Zagros Mountains)에는 융기했던 자그로스 산맥에서 유출됐던 퇴적물이 남서쪽 측면에서 위쪽으로 가며 얇아지는 동일한 패턴을 보여준다.[49] 바크티아리 지층(Bakhtiari Formation)의 상층부는 아래에 있는 바크티아리 하층부와 파스 지층(Fars Formations)의 미세한 입자의 퇴적물 위에 판상 역암(sheet of conglomerate)으로 구성되어 있다. 토마스 오버란더(Thomas Oberlander)는 오늘날과는 달랐던 '시내(streams)'의 맹렬한 침식에 의해 원인된 역암층으로 해석했다.

”어느 곳에나 있는 거대한 역암층이 심한 경사부정합(angular unconformity)을 따라 바크티아리 지층의 하층부 위로 쌓여있다. 부정합과 연속된 퇴적(바크티아리 지층 상층부) 양상은 선신세 말에 전체 산악 지대의 맹렬한 융기를 가리킨다... 바크티아리 지층 상층부는 알프스 서부에서 히말라야 동부에 이르는 거의 균질한 조산대의 맹렬한 삭박(denudation)의 지역적 산물이다. 따라서 그것은 스위스의 나겔플루 층이나 인도의 시와리크 지층과 구별하기 어렵다... 바크티아리 역암은 분지를 채웠고, 골짜기를 넘쳤으며, 조산대 앞의 평원을 뒤덮었으며, 현재는 분홍색의 절벽, 뷰트(buttes, 평원에 고립된 산), 자주 450m 높이의 수직면을 가지는 메사(mesas, 탁상대지) 등으로 습곡대의 가운데와 전에 서있다... 엄청난 량의 역암들이 유사한 계층화 없이, 현재의 기후 하의 하천들에 의해서 운반될 수 있었다는 것은 불가능해 보인다.”[50]

그림 5. 중국의 쓰촨 분지 서쪽의 두꺼운 자갈층.


오버랜더(Overlander)의 관측에 따르면, 두터운 판(sheet) 상의 자갈층은 아시아 남부 및 중부보다 훨씬 광범위하게 퍼져있는데, 심지어 알프스 산맥까지 확장되어 있다.


쓰촨 분지 서부의 자갈들

티베트 고원의 동쪽에는 깊은 쓰촨 분지(Sichuan Basin, 사천 분지)가 있다(그림 3). 티베트 고원 동부(Vern Bissell, personal communication)의 융기로 인해 동쪽으로 흘러들었던 것으로 보이는 두터운 역암층이 서쪽 가장자리 위에 놓여있다. 그림 5는 중국 쓰촨성 칭청산(Mount Qingcheng, 청성산)에 있는 하이킹 코스를 따라 있는 자갈을 보여준다.


토의

장거리를 운반된 자갈들은 세계 대부분의 산들 주변에서 흔히 볼 수 있다. 미국에서 자갈들은 산지 근원(출처)으로부터 자주 수백 km 떨어진 곳까지 운반되어 있다. 미국과 달리, 아시아 남부 및 중부에서 자갈들은 산 앞에서 엄청난 두께로 쌓여 있고, 분지 중심부 쪽으로 나가며 얇아진다. 이러한 패턴은 분지들이 서로 비교적 가까운 산맥에 의해 상대적으로 고립되어 있었기 때문에 형성될 수 있었다. 또한 가장 깊은 고대 계곡들이 산맥이 융기하는 단층 위치인, 산 앞쪽에 인접해 있었던 것처럼 보인다. 그리고 이것은 융기 동안 흘러내렸던 자갈들과 바위들을 붙잡을 수 있었을 것이다.

아시아 중부 및 남부의 산들 주변에 축적되어 있는 막대한 량과 범위의 자갈들은 노아홍수의 후퇴기 동안에 대륙들로부터 홍수 물의 물러갔다는 또 하나의 강력한 증거가 되고 있는 것이다.

수천 미터의 두께에 이를 수 있으며, 수백에서 수천 km 길이로 확장되어 있는 판상의 역암층이 의미하는 것은 무엇일까? 이러한 거대한 판상 패턴은 시편 104:6~9절에 언급되어있는 것처럼, 산들이 솟아오르고, 분지들이 가라앉는, 노아 홍수의 후퇴기와 일치한다. 만약 산 앞을 흘러가던 강들에 의해서 자갈들이 쌓여졌다면, 자갈들은 국소적으로 축적됐을 것이다. 그리고 오버랜더가 앞에서 지적했던 것처럼, 이 막대한 자갈들을 하천들이 퇴적시켰을 것이라는 생각은 완전히 터무니없는 것처럼 보인다. 따라서 아시아 중부 및 남부의 산들 주변에 축적되어 있는 막대한 량과 범위의 자갈들은 노아홍수의 후퇴기 동안에 대륙들로부터 홍수 물의 물러갔다는 또 하나의 강력한 증거가 되고 있는 것이다.

미세입자 퇴적물들은 막대한 량으로 티베트와 중국 서부의 고산들 동쪽에 퇴적되어있다. 이들 물질의 대부분은 황토(뢰스, loess, 바람에 날린 미사)로 간주되고 있다. 중국 중부의 한 거대한 지역은 황토고원(Loess Plateau)이라 불리고 있는데[51], 황토의 두께가 150m를 넘는다.(아래 관련자료 링크 12번 참조). 이들 황토에 대한 많은 논문들이 있다. 오늘날 황토의 상층부는 때때로 부는 강한 바람에 의해서 재퇴적되고 있다. 중국 황토는 이 글의 범위를 벗어나는 것이지만, 융기하는 산들에서 흘러나온 암석들이, 고산들의 동쪽으로 배수되던 홍수 물에 의해서, 중국 동부와 중부로 먼 거리로 운반되면서, 미세한 입자들로 분쇄되어, 퇴적된 것임을 쉽게 나타내고 있다.


홍수/홍수 후 경계에 대한 깊은 고찰

나는 이 연구에서 산들의 융기와 두꺼운 판상의 자갈층의 퇴적은 (동일과정설적 시간 틀로) 신생대 후기에 발생했었음을 확인할 수 있었다. 이것은 신생대 후기에 있었던 전 세계적인 패턴인 것처럼 보인다.[52] 또한 역암들은 물의 작용에 의해서 자주 둥글게 마모되어있고, 고결되어(consolidated) 있는데, 이것은 홍수 물이 산에서부터 지표면을 흐르면서, 커다란 자갈들을 장거리로 운송했음을 가리킨다. 이러한 패턴은 아시아 중남부와 미국 모두에서, 홍수 후퇴기와 매우 잘 맞아 떨어진다. 내가 도달하게 된 유일한 결론은, 이들 지역의 신생대 후기는 홍수에 의한 것이라는 것이다. 그러므로 노아 홍수/홍수 후 경계는 지질주상도에서 가정하고 있는 신생대 늦은 후기가 될 것이다.

동일과정설적 시간 틀로 신생대나 신생대 후기를, 노아홍수가 끝나고 그 이후의 시기라고 믿고 있는 창조론자들은, 아시아 중남부의 대부분의 산들이 융기하고, 물에 의한 침식으로 매우 두터운 역악층들의 퇴적이, 모두 노아 홍수 이후에 일어났다고 가정해야만 한다. 따라서 노아 홍수 이후에 그러한 맹렬한 활동을 설명해야할 뿐만 아니라, 그러한 거대한 판상의 두터운 자갈층이 어떻게 퇴적될 수 있었는지를 설명해야만 한다. 그러한 판상의 퇴적은 판상의 흐름을 의미하고, 이것은 노아 홍수 이후에는 가능해 보이지 않는다. 나는 신생대 지층이 대륙의 여러 곳에서, 후퇴기 동안에 예상되는 패턴과 일치하는 많은 지질학적 자료들을 발견했다.[3, 53] 이러한 견해는 신생대 고생물학 및 생물지리학에 중대한 도전이 되고 있다. 그러나 이 분야에는 많은 알려지지 않은 것들이 있다. 그럼에도 불구하고, 신생대의 지질학적 활동들 모두가 노아 홍수가 끝나고, 그 이후에 일어난 일이라고 보기는 힘들다.

판구조론(plate tectonics)과 격변적 판구조론(catastrophic plate tectonics, CPT)에 따르면, 인도는 아시아 대륙과 충돌했고, 신생대에 아시아 남중부의 모든 구조지질학의 원인이 되었다. CPT 모델이 정확하다면, 그러한 지판들의 긴 여행은 (인도가 아시아와 충돌하게 만든 장거리 이동뿐만 아니라, 신생대 기간 동안의 모든 지판 이동들) 노아 홍수 동안에 일어났던 것이 예상될 수 있다. 따라서 비록 지질주상도와 판구조론을 가정한다 하더라도, 장거리 지판 이동은 신생대가 (적어도 대부분의 지역에서) 노아 홍수 이후가 아니라는, 또 다른 지표가 될 수 있을 것이다.


Related Articles
It’s plain to see
Noah’s long-distance travelers
Flood transported quartzites—east of the Rocky Mountains

The remarkable African Planation Surface
Flood transported quartzites: Part 2—west of the Rocky Mountains
Flood transported quartzites: Part 3—failure of uniformitarian interpretations

Flood transported quartzites: Part 4—diluvial interpretations
The mountains rose
Visual evidence for Noah’s Flood


Further Reading
Geology Questions and Answers


References
1. Walker, T., A Biblical geological model; in: Proceedings of the Third International Conference on Creationism, technical symposium sessions, Walsh, R.E. (Ed.), Creation Science Fellowship, Pittsburgh, PA, pp. 581–592, 1994.
2. These verses apply to the Flood because in verse 6 God covers the mountains, while on Day 3 in Genesis 1:9 the land was ‘uncovered’, and verse 9 states that a boundary was set so that the ocean may not again cover the land. See Oard, M.J., Mt. Everest and the Flood; in: Oard, M.J. and Reed, J.K. (Eds.), Rock Solid Answers: The Biblical Truth Behind 14 Geological Questions, Master Books and Creation Research Society Books, Green Forest, AR, and Chino Valley, AZ, pp. 19–27, 2009.
3. Oard, M.J., Flood by Design: Receding Water Shapes the Earth’s Surface, Master Books, Green Forest, AR, 2008.
4. I am aware most mainstream geologists consider themselves ‘actualists’ and not uniformitarians. Actualism is similar to uniformitarianism except that the former believe in a few large catastrophes sprinkled throughout earth history, such as meteorite impacts. They also admit that the present is not necessarily the key to the past, but that geology must always believe natural processes operated in the past. I believe this philosophical point of view (i.e. naturalism) can be used as an excuse when deductions from the rocks and fossils are contradicted by present processes. But since few people understand the distinction between actualism and uniformitarianism, I will continue using the term ‘uniformitarianism’, especially since this latter doctrine was the philosophical principle used in geology to throw out the Flood.
5. Schmidt, K.-H., The significance of scarp retreat for Cenozoic landform evolution on the Colorado Plateau, U.S.A., Earth Surface Processes and Landforms 14:93–105, 1989.
6. Oard, ref. 3, pp. 50–54.
7. Oard, M.J., The Missoula Flood Controversy and the Genesis Flood, Creation Research Society Monograph No. 13, Chino Valley, AZ, 2004.
8. Pazzaglia, F.J., Landscape evolution; in: Gillespie, A.R., Porter, S.C. and Atwater, B.F. (Eds.), The Quaternary Period in the United States, Elsevier, New York, NY, p. 249, 2004.
9. Twidale, C.R., Geomorphology with Special Emphasis on Australia, Thomas Nelson LTD, Melbourne, Australia, pp. 164–165, 1968.
10. Oard, M.J., Devils Tower can be explained by floodwater runoff, J. Creation 23(2):124–127, 2009.
11. Oard, M.J., Hergenrather, J. and Klevberg, P., Flood transported quartzites east of the Rocky Mountains, J. Creation 19(3):76–90, 2005.
12. Oard, M.J., Hergenrather, J. and Klevberg, P., Flood transported quartzites: part 2 west of the Rocky Mountains, J. Creation 20(2):71–81, 2006.
13. Oard, M.J., Hergenrather, J. and Klevberg, P., Flood transported quartzites: part 3 failure of uniformitarian interpretations, J. Creation 20(3):78–86, 2007.
14. Oard, M.J., Hergenrather, J. and Klevberg, P., Flood transported quartzites: part 4 diluvial interpretations, J. Creation 21(1):86–97, 2007.
15. Hergenrather, J., Noah’s long-distance travelers: quartzite boulders speak powerfully of the global Flood, Creation 28(3):30–32, 2006.
16. Frye, J.C., Leonard, A.B. and Swineford, A., Stratigraphy of the Ogallala Formation (Neogene) of northern Kansas, Kansas Geological Survey Bulletin 118, Lawrence, KS, 1956.
17. Thornbury, W.D., Regional Geomorphology of the United States, John Wiley & Sons, New York, pp. 300–301, 1965.
18. McMillan, M.E., Angevine, C.L. and Heller, P.L., Postdepositional tilt of the Miocene-Pliocene Ogallala Group on the western Great Plains: evidence of late Cenozoic uplift of the Rocky Mountains, Geology 30(1):63–66, 2002.
19. Heller, P.L., Dueker, K. and McMillan, M.E., Post-Paleozoic alluvial gravel transport as evidence of continental tilting in the U.S. Cordillera, GSA Bulletin 115:1122–1132, 2003.
20. Oard, M.J., Origin of Appalachian geomorphology Part II: formation of surficial erosion surfaces, Creation Research Society Quarterly (in press).
21. Froede Jr, C.R., Neogene sand-to-pebble size siliciclastic sediments on the Florida Peninsula: sedimentary evidence in support of the Genesis Flood, Creation Research Society Quarterly 42(4):229–240, 2006.
22. Hill, C.A. and Ranney, W.D., A proposed Laramide proto-Grand Canyon, Geomorphology 102:482–495, 2008.
23. Oard, M.J. and Klevberg, P., Deposits remaining from the Genesis Flood: Rim Gravels in Arizona, Creation Research Society Quarterly 42(1):1–17, 2005.
24. Hansen, W.R., Neogene Tectonics and Geomorphology of the Eastern Uinta Mountains in Utah, Colorado, and Wyoming, U.S. Geological Survey Professional paper 1356, 1986.
25. Schulte-Pelkum, V., Mosalve, G., Sheehan, A., Paney, M.R., Sapkota, S, Bilham, R. and Wu, F., Imaging the Indian subcontinent beneath the Himalaya, Nature 435:1222–1225, 2005.
26. Brozović, N. and Burbank, D.W., Dynamic fluvial systems and gravel progradation in the Himalayan foreland, GSA Bulletin 112:394–412, 2000.
27. Simons, E.L., Ramapithecus, Scientific American 236(5):28–35, 1977.
28. Andrews, P. and Cronin, J.E., The relationships of Sivapithecus and Ramapithecus and the evolution of the orang-utan, Nature 297:541–546, 1982.
29. Meigs, A.J., Burbank, D.W. and Beck, R.A., Middle-late Miocene (>10 Ma) formation of the Main Boundary thrust in the western Himalaya, Geology 23:423–426, 1995.
30. Schelling, D., The tectonostratigraphy and structure of the eastern Nepal Himalaya, Tectonics 11:925–943, 1992.
31. Kumar, R., Ghosh, S.K. and Sangode, S.J., Evolution of a Neogene fluvial system in a Himalayan foreland basin, India; in: Macfarlane, A., Sorkhabi, R.B. and Quade, J. (Eds.), Himalaya and Tibet: Mountain Roots to mountain Tops, Geological Society of America Special paper 328, Boulder, CO, pp. 239–256, 1999.
32. Critelli, S. and Garzanti, E., Provenance of the Lower Tertiary Murree redbeds (Hazara-Kashmir Syntaxis, Pakistan) and initial rising of the Himalayas, Sedimentary Geology 89:265–284, 1994.
33. Clift, P.D., controls on the erosion of Cenozoic Asia and the flux of clastic sediment to the ocean, Earth and Planetary Science Letters 241:571–580, 2006.
34. Burbank, D.W., Causes of recent Himalayan uplift deduced from deposited patterns in the Ganges basin, Nature 357:680–683, 1992.
35. DeCelles, P.G., Gehrels, G.E., Quade, J., Ojha, T.P., Kapp, P.A. and Upreti, B.N., Neogene foreland basin deposits, erosional unroofing, and the kinematic history of the Himalayan fold-thrust belt, western Nepal, GSA Bulletin 110:2021, 1998.
36. Parkash, B., Bajpai, I.P. and Saxena, H.P., Sedimentary structures and palaeocurrents of the Siwaliks exposed between the Yamuna and Gola Rivers, U.P. (India), Geological Magazine 111:1–14, 1974.
37. Dewey, J.F., Shackleton, R.M., Chengfa, C. and Yiyin, S., The tectonic evolution of the Tibetan Plateau, Philosophical Transactions of the Royal Society of London, A327:379–413, 1988.
38. Clark, M.K., Royden, L.Hl, Whipple, K.X., Burchfiel, B.C., Zhang, Z. and Tang, W., Use of a regional, relict landscape to measure vertical deformation of the eastern Tibetan Plateau, J. Geophysical Research 111:1–23, 2006.
39. Zheng, H., Powell, C.M., An, Z., Zhou, J. and Dong, G., Pliocene uplift of the northern Tibetan Plateau, Geology 28:715–718, 2000.
40. Tungsheng, L., Menglin, D. and Derbyshire, E., Gravel deposits on the margins of the Qinghai—Xizang Plateau, and their environmental significance, Palaeogeography, Palaeoclimatology, Palaeoecology 120:159–170, 1996.
41. Abdrakhmatov, K.Ye. et al., Relatively recent construction of the Tian Shan inferred from GPS measurements of present-day crustal deformation, Nature 384:450–453, 1996.
42. Charreau, J., Chen, Y., Gilder, S., Dominguez, S., Avouac, J.-P., Sen, S., Sun, D., Li, Y. and Wang, W.-M., Magnetostratigraphy and rock magnetisim of the Neogene Kuitun He section (northwest China): implications for late Cenzooic uplift of the Tianshan mountains, Earth and Planetary Science Letters 230:177–192, 2005.
43. Métivier, F. and Gaudemer, Y., Mass transfer between eastern Tian Shan and adjacent basins (central Asia): constraints on regional tectonics and topography, Geophysical Journal International 128:1–17, 1997.
44. Charreau, J., Chen, Y., Gilder, S., Barrier, L., Dominguez, S., Augier, R., Sen, S., Avouac, J.-P., Gallaud, A., Graveleau, F. and Wang, Q., Neogene uplift of the Tian Shan Mountains observed in the magnetic record of the Jingou River section (northwest China), Tectonics 28;1–22, 2009.
45. Charreau, J., Gumiaux, C., Avouac, J.-P., Augier, R., Chen, Y., Barrier, l., Gilder, S., Dominguez, S., Charles, N. and Wang, Q., The Neogene Xiyu formation, a diachronous prograding gravel wedge at front of the Tianshan: climate and tectonic implications, Earth and Planetery Science Letters 287:298–310, 2009.
46. Charreau, J., Gilder, S., Chen, Y., Dominguez, S., Avouac, J.-P., Sen, S., Jolivet, M., Li, Y. and Wang, W, Magnetostratigraphy of the Yaha section, Tarim Basin (China): 11 Ma acceleration in erosion and uplift of the Tian Shan mountains, Geology 34:181–184, 2006.
47. Charreau, J., Avouac, J.-P., Chen, Y., Dominguez, S. and Gilder, S., Miocene to present kinematics of fault-bend folding across the Huerguosi anticline, northern Tianshan (China), derived from structural, seismic, and magnetostratigraphic data, Geology 36:871–874, 2008.
48. Heermance, R.V., Chen, J., Burbank, D.W. and Wang, C., Chronology and tectonic controls of late Tertiary deposition in the southwestern Tian Shan foreland, NW China, Basin Research 19:599–632, 2007.
49. Oberlander, T., The Zagros Streams: A New Interpretation of Transverse Drainage in an Orogenic Zone, Syracuse Geographical Series No. 1, Syracuse, NY, 1965.
50. Oberlander, ref. 49, p. 34.
51. Guo, Z.T., Ruddiman, W.F., Hao, Q.Z., Wu, H.B., Qiao, Y.S., Zhu, R.X., Peng, S.Z., Wei, J.J., Yuan, B.Y. and Liu, T.S., Onset of Asian desertification by 22 Myr ago inferred from loess deposits in China, Nature 416:159–163, 2002.
52. Donnelly, T.W., Worldwide continental denudation and climatic deterioration during the late Tertiary: evidence from deep-sea sediments, Geology 10:451–454, 1982.
53. Oard, M.J., Defining the Flood/post-Flood boundary in sedimentary rocks, J. Creation 21(1):98–110, 2007.

 

*추천 자료 : Oard, M.J. Earth's Surface Shaped by Genesis Flood Runoff
http://michael.oards.net/GenesisFloodRunoff.htm



번역 - 미디어위원회

링크 - http://creation.com/south-asia-erosion

출처 - Journal of Creation 25(3):68–73, December 2011

구분 - 5

옛 주소 - http://www.kacr.or.kr/library/itemview.asp?no=6545

참고 : 6543|4352|4214|3111|1071|2083|6030|6076|6415|6422|6531|6524|6508|6507|4490|6462|6431|6417|6413|6255|6254|6240|6225|6222|4198|5957|5958|5955|6469|6523|4535|6325|6104|5675|5717|5721|5737|5841|5897|5973|6097|6123|6130|6170|6175|6215|6223|6228|6311|6316|6330|6453|4275|4235|4473|4607|4610|6049|6006|4195|2141|5951|5834|5556|5517|5468|5429|5419|5400|5399|5286|5307|5264|5260|5185|4786|4722|4471|4468|3595|4211|4217|4132|3968|3948|4363|3044



서울특별시 중구 삼일대로 4길 9 라이온스 빌딩 401호

대표전화 02-419-6465  /  팩스 02-451-0130  /  desk@creation.kr

고유번호 : 219-82-00916             Copyright ⓒ 한국창조과학회

상호명 : (주)창조과학미디어  /  대표자 : 오경숙

사업자번호 : 120-87-70892

통신판매업신고 : 제 2018-서울중구-0764 호

주소 : 서울특별시 중구 삼일대로 4길 9, 라이온스빌딩 401호

대표전화 : 02-419-6484

개인정보책임자 : 김광