노아 홍수의 후퇴기에 대륙에서 일어났던 막대한 침식

미디어위원회
2021-01-28

노아 홍수의 후퇴기에 대륙에서 일어났던 막대한 침식
(Tremendous erosion of continents during the Recessive Stage of the Flood)

by Michael J. Oard


      노아 홍수의 후퇴기(Recessive Stage)는 막대한 대륙 침식의 시기였다. 침식된 잔해들은 대륙주변부(continental margin)에 퇴적되면서, 대륙을 둘러싼 압축된 연속적인 퇴적물 쐐기(sediment wedge)를 형성했다. 이 쐐기의 어느 부분까지가 후퇴기 동안 침식된 퇴적층 잔해인지, 그리고 이후에 퇴적암으로 고결되었는지를 확인할 수 있다면, 그래서 이 퇴적물과 암석의 부피를 평가할 수 있다면, 대략적으로 대륙에서 침식된 퇴적물질의 정량적 추정치를 알 수 있을 것이다. 현재 전체 부피를 평가하는 것은 불가능하지만, 일부 지역에 대한 평가는 이루어질 수 있다. 그리고 이것은 다른 대륙주변부 지역으로 확장될 수 있는 방법론을 제공한다. 그러한 지역 중 하나는 미국의 애팔래치아 산맥과 그 아래의 대륙주변부이다. 연구에 따르면, 블루리지(Blue Ridge) 산맥과 피드먼트 고원(Piedmont) 지역에서 대략 평균 6,000m 두께의 침식이 발생했다. 또 다른 지역은 아프리카 남서부의 대륙주변부이다. 이곳의 추정치는 인접한 대륙으로부터 평균 2,400m 두께의 지층암석들이 침식됐음을 보여준다. 침식은 아마도 해안가에 있는 산들과 평야에서 더 컸을 것이다. 해안평야에 있는 도상구릉(inselbergs, 평원 위에 고립해 솟아 있는 산)에 의한 증거들은 이 침식 사건이 매우 빠르게 일어났음을 나타낸다. 이 연구는 현재에 대륙에 존재하는 평균 1,800m 두께의 퇴적지층 보다 훨씬 더 많은 퇴적물과 퇴적지층들이 대륙에 존재했었음을 보여준다. 대륙주변부 퇴적암의 많은 비율(약 30% 이상)이 신생대이기 때문에, 지질주상도가 암석기록의 정확한 퇴적 순서를 나타낸다고 가정할 때, 홍수/홍수 후 경계(Flood/post-Flood boundary)는 신생대 후기임에 틀림없다.

-------------------------------------------------------------------


     노아 홍수의 후퇴기는 대륙 규모로 막대한 침식이 일어났던 기간이었다.[1,2,3] 그것은 두 단계로 이루어진 것으로 보인다. 즉 판상흐름 단계(Sheet Flow Phase, or Ablative Flow Phase)와 수로화된 흐름 단계(Channelized Flow Phase, Dispersive Flow Phase)로 이루어졌을 가능성이 높다.[4] 따라서, 수로화 된 침식 지형들은 판상흐름 침식 지형에 중첩되어 나있다. 이 예측은 미국의 남서부 콜로라도 고원(그림 1)을 포함하여 많은 곳에서 입증되었으며, 대규모의 평탄화(large-scale planation)가 일어났고, 협곡과 계곡으로 잘려졌음을 보여준다. 첫 번째 유형의 침식은 대삭박(Great Denudation)으로 불리고 있는데, 평균 약 3,000m의 퇴적지층이 콜로라도 고원(Colorado Plateau) 남서부에서 침식되어 광대한 평탄면(planation surface)을 남겨놓았다.(그림 2).[5] 침식된 부피는 콜로라도 고원 전체에 대해서 평균 2,500~5,000m가 침식되었다.[6] 두 번째 침식 사건은 그랜드 캐니언과 자이언 캐니언에 발생해있는 대침식(Great Erosion)이라고 불리는 것이며, 노아 홍수 후반에 수로화 된 침식에 의한 절단 사례이다.[7] 그러나 이 침식은 콜로라도 고원에만 국한되지 않았다. 홍수 물이 대륙으로부터 새로 깊어진 대양분지로 흘러갔을 때, 같은 종류의 침식들이 발생했다. 악마의 탑(Devils Tower)과 같은 침식 잔존물[8](참조), 또한 콜로라도 고원 북서쪽에 있는 산 라파엘 스웰(San Rafael Swell)과 같은 침식된 배사구조(anticlines)(그림 3)[9](참조), 그리고 남아프리카의 해안지역에 있는 3,500km 길이의 거대한 해안 급경사면(great Coastal Escarpments)[10]과 같은 것들로부터 알 수 있는 것처럼(참조), 막대한 량의 퇴적지층이 다른 지역에서도 동일하게 침식되었다. 남아프리카의 이 거대한 해안 급경사면은 아프리카 남동부에서 약 3,000m 높이이지만, 남서부 아프리카에서는 약 1,000m 높이이다.

그림 1. 콜로라도 고원과 주변 지역의 지도. 그랜드 캐니언(Grand Canyon)은 남서쪽에 있고 산 라파엘 스웰(San Rafael Swell)은 고원의 북서쪽에 있다(map background provided by Ray Sterner and drawn by Peter Klevberg). 화살표는 카이밥 고원(Kaibab Plateau) 북부를 가로지르는 저지대와, 그 저지대가 코코니노 고원(Coconino Plateau)의 동쪽 가장자리에 있는 그랜드 캐니언 남쪽까지 확장되어 있음을 가리킨다.

그림 2. 그랜드 캐니언 지역의 평탄면(planation surface). 그랜드 캐니언의 노스림에서 북쪽을 바라본 전망.

그림 3. 삼각법을 기반으로, 그린리버 지층(Green River Formation)의 상층부에 침식 잔해의 높이를 추가하여(Peter Klevberg가 그림), 콜로라도 고원 북서부의 산 라파엘 스웰(San Rafael Swell)의 북쪽 가장자리에서 추정되는 4,200~5,100m의 침식. 


침식된 퇴적물은 고도가 낮은 쪽으로 이동되어, 수심이 깊어져서 유속이 빠르게 감소되는 장소에 퇴적되었을 것이다. 이러한 조건은 대륙주변부를 따라 거의 보편적으로 충족되었다. 대륙주변부(continental margin)는 대륙붕(continental shelf), 대륙사면(continental slope), 대륙대(continental rise)로 구성되어 있으며(그림 4), 모든 대륙 주변과 심지어 큰 섬 주변에서 연속적으로 이루어진 퇴적물 쐐기(sediment wedge)로 대부분 퇴적되어 있다. 그것은 지구상에서 가장 주요한 지형학적 특징 중 하나이다. 대륙붕에서 퇴적물의 두께는 어떤 곳에서는 20km나 되지만(이것의 약 30%가 신생대), 위치에 따라 측면 범위와 두께가 모두 다르다. 이들 퇴적물은 육지에서 흘러나오는 판상흐름에 의해서 퇴적되었을 가능성이 가장 높다. 대량의 퇴적물이 퇴적된 이후에, 강한 물 흐름에 의해서 수로화 된 침식이 발생했고, 퇴적물 표면을 가로지르며 커다란 수로들을 파내기 시작했고, 해저협곡(submarine canyons)들을 침식했다.[11, 12] 

그림 4. 대륙주변부(continental margin)는 비교적 얕은 대륙붕(continental shelf), 가파르게 하강하는 대륙사면(continental slope), 경사가 점진적으로 감소하는 대륙부(continental rise)로 이루어져있으며, 연속적으로 이루어진 퇴적물 쐐기(sediment wedge)로 대부분 퇴적되어 있다. 


대륙주변부가 주로 이런 방식으로 퇴적된 퇴적물로 구성되어 있다면, 이 퇴적물 쐐기의 부피는 대략적으로 대륙에서 침식된 지층암석의 부피가 된다. 이 대륙주변부 퇴적물 중 일부는 홍수 초기에 퇴적되었을 수 있지만, 이 지점에서 그 양을 추정하기는 어려울 것이다. 우리는 신생대 퇴적물은 노아 홍수 후퇴기에 퇴적되었고, 신생대 이전 퇴적물은 범람기에 쌓여졌을 것이라고 단순하게 가정할 수는 없다. 더욱이 이러한 지질시대는 지질주상도와 판구조론(즉 쥐라기와 백악기에 대서양이 갈라졌다는)을 가정하여 퇴적물에 적용된 기간이다. 

그럼에도 불구하고, 침식 면적이 수량화되어 주어지면, 평균 두께는 노아 홍수 동안 침식된 총량으로 계산될 수 있으며, 후퇴기 동안 최소 추정치는 신생대 퇴적물 두께의 근사치로 제공 될 수 있다. 그러나 과학자들이 이것을 추정할 수 있는 수준에 가까워지고 있지만[13], 대륙주변부에 있는 퇴적물의 총량은 현재 알려져 있지 않다. 아직까지 전 세계의 퇴적물 총량은 추정되기 어려울 것이다. 예를 들어, 북극해 퇴적물 경계의 퇴적물 부피는 알려져 있지 않고, 측정되기 어렵다. 그러나 데이터에 많은 제약이 있는 지역에서도 추정 방법을 적용하는 것은 가능하다.


미국 애팔래치아 중부에서 평가된 침식

북미대륙 동부의 거대한 애팔래치아 산맥(Appalachian Mountains)은 캐나다 남동부의 뉴펀들랜드에서 대서양 해안 2,400km를 따라 앨라배마 중부까지 이어져있다. 남부와 중부 애팔래치아에는 동쪽에서 서쪽으로 피드몬트 고원(Piedmont), 블루리지 산맥(Blue Ridge Mountains), 애팔래치아의 밸리&리지(Valley and Ridge), 애팔래치아 고원(Appalachian Plateau)과 같은 지역들이다.(그림 5). 뉴잉글랜드와 캐나다에서 애팔래치아 산맥은 일반적으로 융기된 결정질 암석들이 노출되어있다.

그림 5. 피드먼트 고원, 블루리지 산맥, 애팔래치아 산맥 및 고원을 보여주는 미국 동부지도.


대륙주변부에서 퇴적물의 부피를 추정하는 것에 더하여, 침식이 일어난 깊이는 현재 지표면에 노출된 석탄의 등급으로 대략적으로 알아낼 수 있다.[14,15,16] 석탄(coal)은 애팔래치아 산맥의 밸리&리지의 퇴적암에서 흔히 발견된다. 이 석탄은 대부분 고급 무연탄(anthracite) 및 중급 역청탄(bituminous coal)이다. 연구자들(Friedman and Sanders)은 뉴욕의 캐츠길 산맥(Catskill Mountains)에 있는 무연탄은 현재의 온도 구배(temperature gradient, 깊이에 따른 지열 차이)가 지속됐었다는 가정 하에 약 6,400m의 지층암석이 제거되었음을 나타낸다고 믿고 있다.[15] 동일한 방법이 블루리지 산맥 서쪽의 퇴적암에도 적용할 수 있다. 이곳에서는 무연탄이 지표면 근처에서 발견된다. 그러나 석탄이 형성됐을 때 온도 구배가 더 높았다면, 침식된 양은 더 적었을 것이다.[14] 이것은 홍수 동안 깊은 분지에서 더 높은 온도 하에 퇴적 시 발생할 수 있다. 하지만 현재의 온도 구배를 가정하고 첫 번째 근사치를 추정하였다. 역청탄은 무연탄보다 등급이 낮기 때문에, 해당 지역에서의 표토는 아마도 상당히 적었을 것이다. 그럼에도 불구하고, 이 방법으로 애팔래치아 산맥 지역에서 퇴적물과 지층암석의 침식 두께를 4,000~6,400m로 평가하는 것은 불합리한 것이 아니다.

이 수치를 염두에 두고, 대륙주변부에서 발견되는 퇴적물의 부피를 살펴보자. 지질학자들은 이러한 퇴적물이 애팔래치아에서 유래했다고 믿고 있다.[17] 홍수 시나리오에서, 이 침식은 대부분 후퇴기에 발생했을 것이다.[17,18] 포아그와 세본(Poag and Sevon)은 다음과 같이 말했다. “고려되고 있는 주요한 구동 메커니즘은 지각판 이동과 조륙적 융기 및 침강이었다...[19] 애팔래치아와 대륙주변부 퇴적물 아래의 기저부 사이의 차별적 수직 운동 총량은 14km에 도달한 것으로 여겨진다![20] 조륙적 융기(isostatic uplift, 퇴적지층의 제거로 인한 2차적 구조적 힘)는 침식되는 지역의 지각 융기를 추가시켰을 것이며, 퇴적물을 받아들이는 지역의 침강을 추가시켰을 것이다.

다행히도 미국 중동부의 대륙주변부는 지구물리학적 방법 및 직접 시추작업을 통해서 집중적으로 연구되었다. 포아그와 세본은 위도 36° 및 42° N과 경도 39°30΄및 78° W 사이의 약 500,000㎢의 면적에 쌓여있는 쇄설성 퇴적물(siliciclastic sediment, 비탄산염 및 비침전물)의 총량을 137.7만 ㎦으로(그것의 33%는 신생대) 추정했다.[17] 이러한 평가는 해안선 동쪽으로 멀리 확장되어있는 대륙대(continental rise)를 포함한다. 이 지역의 평균 두께는 2,700m이다. 여기에서 화학적 또는 생물학적으로 물에서 직접 퇴적될 수 있는 탄산염, 소금, 석고(gypsum)와 같은 비쇄설성 퇴적물은 생략되었다. 이것들은 내륙에서 침식된 것이 아니다. 그러나 홍수 모델에서는 이러한 화학적 퇴적물은 대륙에서 처음 침식되었을 수도 있다. 이러한 화학적 퇴적물을 포함한다면, 대륙주변부 퇴적물의 추정 평균 두께는 약 3,000m가 될 것이다.

피드먼트 서쪽으로부터 애팔래치아의 밸리&리지까지 중앙 애팔래치아 산맥은 북위 36°와 42° 사이에서 약 315,000㎢의 면적을 차지한다.[12] 대륙주변부 퇴적물쐐기의 퇴적물과 퇴적암의 총 부피를 기반으로, 서쪽에서 동쪽으로의 물 흐름을 가정하고, 모든 퇴적물이 해당 지역에서 유래했다고 가정하면, 가장 일반적인 계산은 평균 약 4,400m 두께의 지층이 이 지역에서 침식되었다. 침식과 퇴적이 서쪽에서 동쪽으로 이루어졌다는 가정은 아마도 좋은 가정일 것이다. 왜냐하면 연안지역에 비해 미국 동부의 강력한 융기가 동쪽으로 흐르는 강한 물 흐름을 초래했을 것이기 때문이다. 대륙주변부 퇴적물은 여전히 36°N 남쪽과 42°N 북쪽으로 두껍다. 따라서 나는 어떤 북-남 퇴적물은 중요하지 않다고 가정할 것이다.

연안 퇴적물의 대부분은 블루리지 산맥이 주로 있는, 애팔래치아 분할(분수령) 동쪽에서 유래했을 가능성이 있다. 왜냐하면 홍수 동안 미국 동부가 융기하는 동안, 침식이 매우 크게 가속화됐을 것이기 때문이다. 모든 퇴적물이 분할의 동쪽에서 기원했다면, 최대 추정치로 침식된 면적은 약 30% 감소할 것이고, 남은 면적의 침식된 두께는 평균 약 6,000m가 될 것이다. 이 두께는 밸리&리지의 석탄 등급에 관한 연구에서 제시된 침식 두께의 범위와 잘 일치한다.

홍수의 후퇴기는 대륙 규모의 막대한 침식 기간이었다.


중앙 애팔래치아 산맥에서의 침식 대부분은 블루리지 고원과 동쪽의 피드몬트 고원에서 대륙 분할(continental divide, 분수령)을 따라 발생한 것으로 보인다. 이 지역은 거의 전적으로 노출된 화성암과 변성암으로 (위에 있던 홍수 퇴적물이 제거된) 구성되어 있다. 서쪽으로, 밸리&릿지 지역은 분명히 침식되어있지만, 애팔래치아 분지(Appalachian Basin)에는 상당한 두께의 퇴적물이 쌓여 있는데, 오늘날 이곳에 있는 퇴적 지층의 두께는 10km를 초과한다. 침식된 퇴적물의 추정치가 합리적이라면, 이 분지의 퇴적암은 한때 두께가 14~16km에 도달했을 수 있으며, 절정기와 후퇴기 동안 4~6km가 침식됐을 수 있다. 따라서 원래의 애팔래치아 분지는 피드몬트의 동쪽 가장자리까지 확장되어 있었을 가능성이 높다. 블루리지와 피트먼트 지역의 기저부에 화성암과 변성암의 존재는, 그 지역에서 더욱 막대한 침식을 가리키며, 대륙주변부 퇴적물의 대부분은 위에 놓여있는 퇴적암과 깊은 곳의 화성암 및 변성암 일부에서 파생되었음을 시사한다. 이 침식은 피트먼트 지역에 거친 평탄면을 형성했으며, 이후 수로화 된 물흐름 단계에서 계곡들을 파냈다. 또한 블루리지와 밸리&리지 지역 전체에 걸쳐 수백 개의 수극(water gaps)과 풍극(wind gaps)들이 있는데, 이들은 수로화 된 물흐름에 의해서 형성된 것이다.[22, 23]

사람들은 홍수물이 물러갈 때, 얼마나 많은 침식이 발생할 수 있었는지 궁금해 한다. 침식은 지층 전단력(shear force)과 관련이 있다. 이 힘은 수류(물흐름) 속도의 4승에 비례한다.[24] 따라서 속도가 2배가 되면, 전단력은 16배로 증가한다. 속도가 4배가 되면, 지층 전단력은 수백 배(256배)로 증가한다. 애팔래치아 산맥과 해안가 사이의 수직적 차이가 매우 컸다면, 대륙에서 물러가던 홍수 물의 흐름을 크게 가속화되었을 것이고, 대규모의 침식을 일으켰을 것이다.

홍수의 후퇴기 동안의 침식 정도를 이해하기 위해서는 현재의 지형을 살펴볼 필요가 있다. 현재 애팔래치아 산맥에서 가장 높은 고도는 노스캐롤라이나 서부의 미첼산(Mount Mitchell)으로 2,037m에 이르며, 테네시 동부의 클링먼스 돔(Clingman’s Dome)을 12m 능가한다. 오늘날 애팔래치아 산맥의 봉우리들 대부분은 훨씬 낮다. 따라서 홍수 후반기에 일어났던 침식은 오늘날 남아있는 것의 최대 세 배까지 제거되었다. 다양한 요인들이 과거와 현재의 고도에 영향을 미칠 수 있었지만, 이 지역에서 형성된 암석기록의 상당 부분이 홍수 후반기에 침식된 것은 분명하다.


아프리카 대륙 남서부에서 평가된 침식

석탄 등급 기술이 아프리카 남서부 지역의 침식 평가에 적용되지는 않았지만, 침식 추정치는 대륙주변부 퇴적물 쐐기의 부피로부터 얻어질 수 있다(그림 6). 유정과 지구물리학적 조사의 데이터를 통해서, 과학자들은 나미비아와 남아프리카 서부의 주변부 퇴적물의 양을 추정할 수 있었다.[25] 그들의 목표는 이렇게 시작한 작업을 대륙 전체로 확장하는 것이었다. 그들은 흥미로운 관심 지역으로 북쪽의 해저 왈비스 산맥(submarine Walvis Ridge)와 아프리카 남단에 충돌하고 있는 포크랜드/아굴라스 균열대(Falkland/Agulhas fracture zone) 사이의 지역을 조사했다. 균열대는 흔히 깊은 해곡(trough)에 인접한 능선이 융기하여 결과된다. 이 해저 능선은 북쪽이나 남쪽에서 오는 퇴적물의 대부분을 막을 가능성이 높으므로, 남서 아프리카의 대륙 침식에 대한 합리적인 추정치를 제공한다.

그림 6. 남부 아프리카와 인접한 대양 경계부의 지도(drawn by Melanie Richard). 굵은 화살표는 남아프리카가 융기되는 동안 유출 방향을 나타낸다. 남서 아프리카에 있는 선은 남서 아프리카 두 지역에서의 추정되는 대륙적 침식을 보여준다. 숫자의 단위는 킬로미터.


여기서 대륙주변부(continental margin)의 퇴적물은 특히 여러 깊은 분지에 쌓여있다. 왈비스 분지(Walvis  basins)와 오렌지 분지(Orange basins)는 대부분 대륙붕 아래에 위치해 있으며, 최대 8,000m의 퇴적물이 쌓여져 있다.[25] 대륙주변부의 지질학적 단면에 기초하여, 이 퇴적암은 해안을 빠르게 얇게 만들고, 해안에서 약 1,000km로 확장되며 소멸되고 있다.[25] 이 두 분지의 길이는 약 1,500km이며, 남북으로 달리고 있다. 왈리스 해저산맥과 포크랜드/아굴라스 균열대 사이의 추정되는 퇴적 면적은 약 1.5×10^6 ㎢이고, 가장자리 퇴적물의 평균 두께는 약 3,200m이다. 동일과정설 과학자들에 의해서, 퇴적물의 상위 33%는 신생대 퇴적물로 평가되고 있고, 반면에 남은 주요 퇴적물들은 쥐라기 및 백악기로 평가되고 있다. 그러나 여기에서 지질 연대는 매우 임의적일 수 있으므로 중요하지 않다. 이들 분지는 홍수의 최고점인 절정기 단계에서 형성되기 시작했으며, 대륙과 해저 사이에 수직적 강력한 차별적 판구조 운동이 발생했을 때인 후퇴기를 통해 지속되었을 가능성이 높다.[26] 이러한 격변적 판구조 운동은 지각의 늘어남과 균열을 동반했다.[27] 북미대륙의 동부 해안도 아프리카 남서부 지역과 마찬가지였다. 그래서 첫 번째 추정으로, 나는 대부분의 대륙주변부 퇴적물은 홍수의 후퇴기(Recessional Stage) 동안에 퇴적되었다고 가정할 것이다.


계산된 연안 퇴적물

오늘날 동일과정설적 지질학자들은 판구조론 패러다임에 의해서 그들의 연구를 적용하고, 대륙주변부 퇴적물의 부피에 대한 평가를, 쥐라기 말로부터 시작된 기간으로 할당하여 계산하였다. 남미대륙이 아프리카대륙에서 분리된 것으로 추정하는 '시기'를 백악기 초기로 보고 있지만, 쥐라기 말에 있었던 활발한 융기활동 동안에 퇴적된 퇴적물로 보고 있는 것이다.[25] 그러나 전체 부피는 그들이 제공하는 시대별 부피를 간단히 더하면 얻을 수 있다. 화산암과 탄산염은 대륙 운반 및 침식에 의한 것이 아니라, 현장에서 형성되었다고 가정하기 때문에, 계산에 포함되지 않았다. 대륙에서 침식된 규산암(siliciclastic rocks)의 총 부피는 약 3.7 × 10^6㎦ 이다.(이 중에서 약 1.2×10^6 ㎦는 신생대로 말해짐).

이것은 퇴적물의 부피로 평가한 보수적인 추정치이다. 왜냐하면 화산암은 분명 원래 장소에 형성되었지만, 대부분의 탄산염은 대륙에서 침식되어 연안에 재퇴적되었을 것이기 때문이다. 이 탄산염은 원래 장소에서 침전되었지만, 아마도 침식된 대륙 퇴적물에서 기원하여 흐르는 물에 용해됐을 것이다. 탄산염암(carbonate rock)의 양은 쇄설성퇴적암의 약 30%이다.[25] 만약 탄산염을 추가한다면, 아프리카 남서부에서 침식된 총 부피는 약 4.8×10^6 ㎦이다.


아프리카 남부에서 평가된 침식

우리는 중부 애팔래치아 지역보다 남부 아프리카 지역의 침식에 대해 잘 알고 있지 못하지만, 아프리카 남서부 지역의 평균 침식 깊이와 침식 면적에 대한 대략적 추정은 가능하다. 대륙의 융기, 해양분지의 침강, 또는 둘 다가 진행되는 동안, 대륙에는 변형이 일어났고, 산과 분지들이 형성됐다.[29] 광범위한 초기 침식은 아프리카 표면(African Surface)이라고 불리는 평탄면(planation surface)을 형성했다.[30] 아프리카 남서부에서 거대 급경사면(Great Escarpment)이 내륙으로부터 약 100km에 위치하고 있으며, 두 개의 평탄면으로, 즉 해안평야와 내륙평탄면으로 분리되어 있다(그림 7). 더 동쪽에는 아프리카 남동부의 고지대와, 나미비아 및 서부 남아프리카의 고원 사이에 있는, 칼라하리 분지(Kalahari basin) 또는 내륙평야가 있다. 남동 아프리카의 해안 지역은 상당히 고도가 높으며, 약 3,000m 높이의 드라켄즈버그 급경사면(Drakensberg escarpment)이 형성되어있다.

그림 7. 남부 아프리카 해안에서 100~160km 사이의 내륙에서, 대부분 해안과 평행하게 3,500km를 달리며 일부 큰 틈(gaps)을 갖고 있는 해안 거대 급경사면(Great Escarpment)의 평면도(Melanie Richard가 그림)


방법은 애팔래치아에서 사용된 방법을 따랐다. 아프리카 남서부의 급경사면 절벽은 그렇게 높지는 않기 때문에, 나는 왈리스 해저산맥과 포크랜드/아굴라스 균열대 사이의 드라켄즈버그 산맥 서쪽으로부터의 침식 정도를 추정할 것이다. 왈리스 해저산맥는 약 20°S에서 해안에 접근하고, 포크랜드/아굴라스 균열대는 35°S에서 남아프리카의 남단에 가까워진다. 나는 또한 해안과 수직적 방향인 동-서 방향으로 흘렀던 물 흐름을 가정하였는데, 이는 대륙 융기로 인해 물 흐름이 대양 분지인 서쪽으로 흘러갔을 것이기 때문이다. 이 면적은 약 2×10^12㎡이다. 퇴적암과 연안퇴적물의 총량을 침식된 면적으로 나누면, 평균 2,400m 두께가 된다. 해안 근처는 더 심한 침식이 일어나 거대 급경사면(Great Escarpment)이 발생됐을 가능성이 높다. 이것은 새로운 흐름 구배에 대한 변화의 궤적이었고, 침식되는 물의 가속이 그곳에서 빨랐을 것이기 때문이다.


빠른 침식의 증거

아프리카 대륙에서 노아 홍수의 침식 단계 동안, 아프리카 표면(African Surface)이라고 불리는, 대륙 규모의 평탄면(planation surface)이 형성되었으며, 차등 융기로 형성된 지역적 구릉들과 분지들에 의해서 그 평탄면은 파괴되었다. 특히 이러한 거대한 스케일의 평탄면은 오늘날 형성되지 않는다.[11, 12, 31] 그러므로 그것들은 동일과정설적 지형학으로는 설명될 수 없다. 노아 홍수의 후퇴기는 오늘날 우리가 볼 수 있는 판상침식과 수로화 된 흐름을 동반한 대규모 침식 지형을 예측하기 때문에, 이것은 대홍수를 가리키는 강력한 증거이다.

노아 홍수의 후퇴기는 수개월 동안 지속되었지만, 초기 침식 속도(유속과 더 밀접하게 관련됨)는 훨씬 더 빠를 수 있다. 약 1,000m 높이의 아프리카 남서부의 해안 절벽(거대 급경사면)은 침식되면서, 해안 근처에서 시작하여 100km 이상 내륙으로 이동했을 가능성이 크다.[12] 거대 급경사면이 3,500km 길이로 남아프리카를 둘러싸고 있다는 점을 감안할 때, 해안가 근처에서 거대 급경사면 위치까지 침식된 부피는 막대한 량이다. 침식은 현대지질학인 동일과정설이 추정하는 속도에 비해 너무도 빨랐고, 그 부피는 너무도 막대한 크기였다.[32]

나미비아 사막의 해안 평탄면에는 미국 블루리지 산맥 동쪽의 산록완사면(pediments)과 유사한 기저부 산록완사면으로 둘러싸인 수많은 화강암 도상구릉들이 있다. 도상구릉(inselbergs)은 일반적으로 평탄면 위로 솟아있는 침식 잔재이다. 아프리카 남서부에서 가장 유명한 도상구릉은 스피츠코프(Spitzkoppe)로 사막 바닥에서 600m 높이로 남아있다.(그림 8). 이 높이는 해당 지역의 침식 깊이에 대한 최소 추정치를 제공해준다. 스피츠코프는 화강암으로 구성되어 있다. 화강암은 심성암이기 때문에, 상당한 양의 퇴적물이 이 위로 뒤덮였을 가능성이 높으며, 이 퇴적물은 후퇴기 동안에 침식되었다. 따라서 적어도 600m 이상의 퇴적물이 나미비아 사막에서 침식되었음을 알 수 있다.

그림 8. 아프리카 나미비아 사막의 해안 평탄면 위 600m 높이로 남아있는 도상구릉(inselberg)인 스피츠코프(Spitzkoppe).(from Wikipedia).


오늘날 스피츠코프의 수직 경사면은 도상구릉 중심 쪽으로 절벽의 후퇴를 보여주며 침식되고 있는 중이다. 최근에 그 침식 속도가 측정되었으며, 거의 수평적인 산록완사면의 침식 속도보다 2~3배 빠른 것으로 밝혀졌다. 가파른 경사면은 수평면보다 훨씬 빨리 침식되기 때문에, 이것은 놀라운 일이 아니다. 그러나 이것은 또 다른 질문을 야기시킨다. 왜 스피츠코프와 같은 도상구릉은 장구한 지질학적 시간이 지났음에도 아직도 남아있는 것일까? 키가 큰 도상구릉이 만들어지려면 격변적 물 흐름에 의한 빠른 침식이 필요하며, 이러한 지형이 남아있다는 것은 형성된 이후에 시간이 얼마 지나지 않았음을 가리키는 것이다. 이것 둘 다 동일과정설적 지질학자들에게는 문제가 된다.[12] 더군다나 모든 대륙에 수많은 도상구릉들이 존재하고 있는데, 이것은 전 세계적으로 격변적인 대사건이 있었음을 나타낸다.


시사점

이러한 계산은 홍수 모델이 특징적인 지형 및 지질학적 특징의 존재를 어떻게 예측할 수 있는지를 보여준다. 그리고 이것은 동일과정설 지질학자들이 만들 수 없는 계산의 기초를 제공한다. 왜냐하면 그들의 동일과정설 패러다임에서는 이러한 대홍수와 막대한 침식을 배제하고 있기 때문이다.

홍수 모델의 분명한 우월성은 홍수 후퇴기 동안 대륙에서 발생했던 막대한 양의 침식된 퇴적암과 퇴적물에 대해 설명할 수 있다는 것이다. 침식 속도는 진화론자들이 거의 상상할 수 없을 정도로 빠르게 일어났다. 홍수 모델은 대륙 스케일의 막대한 침식뿐만 아니라, 침식이 최대로 일어났던 곳에 대한 지리적 위치를 예측할 수 있는데, 대륙과 대양분지 사이의 고도 차이가 큰, 기울기의 최대 변화가 있는 곳에서 발생했을 것이다. 또한 수심의 변화로 인해 물 흐름의 속도가 급격히 떨어지는 지점에 운반된 퇴적물을 퇴적시켰을 것을 예측한다. 즉 대륙주변부(continental margin)에 퇴적물 쐐기(sediment wedge)를 생성했을 것을 예측한다. 이 퇴적물 쐐기는 모든 대륙에 있으며, 이들 퇴적물의 상대적 부피는 대륙에서 침식과 퇴적이 더 크게 일어난 곳과 더 적게 일어난 곳을 나타낸다. 이것을 통해 인접 지역에서 제거됐던 퇴적물의 양과, 영향을 받은 지역의 넓이를 파악하는 데 도움이 될 수 있다.

홍수 후반기에 대륙에서 막대한 침식이 발생했다면, 우리가 보고 있는 지표면에 있는 퇴적암의 상당 부분은, 신생대와 같이 매우 '젊은' 연대의 퇴적암조차도, 실제로는 그것보다 '오래된' 연대로 할당되게 되었다는 것이 피할 수 없는 결론이다.

그리고 분명히 미국 유타주의 산라파엘 스웰(San Rafael Swell)에서와 같이, 인접한 대륙 지각 위에 있는 홍수 퇴적물 두께의 추정치는 대륙주변부로 운반됐던 침식 퇴적물의 부피를 추정하는 데 도움이 된다. 중부 애팔래치아와 아프리카 남서부의 침식 추정치 값은 대륙의 평균 침식을 나타내지는 않지만, 어느 정도의 추정할 수 있는 척도를 제공한다. 모든 대륙에 있는 퇴적암의 평균 깊이는 1,800m로 추정된다.[35, 36] 이 두께도 엄청난 량이지만, 침식된 지층 두께와, 대륙주변부에 쌓여있는 퇴적층 두께, 또는 콜로라도 고원에 있는 퇴적지층과 비교하여보면, 그렇게 많은 량이 아니다. 노아 홍수의 후퇴기 직전에 대륙에 쌓여있던 퇴적지층의 평균 두께가 지금 보다 50% 더 많았을 것이라고 제안하는 것은 비합리적인 것이 아니다.[37]

또 다른 시사점은 홍수/홍수 후 경계(Flood/post-Flood boundary)의 위치와 관련된 것이다. 대륙주변부에서 관찰되는 거대한 규모의 침식과 퇴적은 대홍수에 의해서만 일어날 수 있었다. 이러한 발견은 노아 홍수가 신생대 말까지 끝날 수 없음을 시사한다. 예를 들어, 미국 동부 해안의 퇴적물은 총 부피가 134만 ㎦로 추정된다. 그 중 약 33%는 신생대로 연대가 평가되고 있는데, 이 신생대 퇴적물이 노아 홍수 이후의 격변으로 쌓여진 퇴적물로 설명하기에는 너무 그 량이 많다.[20] 대륙주변부의 중생대 퇴적물조차도 후퇴기에 나온 것 같지만, 그것에 대한 수정은 이 논문의 범위를 벗어나는 것이다. 마찬가지로 멕시코만 북부의 두꺼운 대륙주변부의 퇴적물 쐐기에는 약 12km 두께의 신생대 퇴적암이 포함되어 있다.[38] 두꺼운 신생대 퇴적암은 다른 대륙주변부를 따라 발견되며, 이는 홍수/홍수 후 경계가 신생대 후기였음을 강력하게 가리킨다.

그렇게 막대한 침식이 노아 홍수 후반기에 대륙에서 발생했다면, 우리가 보고 있는 지표면에 있는 신생대와 같은 매우 '젊은' 연대의 퇴적암조차도, 실제로는 그것보다 '오래된' 연대로 할당됐을 것이라는 것이 피할 수 없는 결론이다. 일부 침식은 노아 홍수가 절정에 이르렀을 때인 범람기 말에도 발생했을 가능성이 있다. 물론 예외는 있지만, 그것이 이러한 결론을 약화시키지는 않는다. 대륙에서 홍수 퇴적물은 매우 비선형적으로 퇴적되었을 것으로 보이며, 오늘날 대륙에 보존되어있는 퇴적지층의 대부분은 노아 홍수 초기 단계에 퇴적된 것들이다.


Acknowledgements
I thank Dr John Reed and an anonymous reviewer for reviewing and improving the manuscript. I also thank Melanie Richard and Peter Klevberg for drawing several of the diagrams, as well as Ray Sterner for providing the map background for figure 1.


Related Articles
Continental-scale erosion
Eroding ages
Retreating Stage formation of gravel sheets in south-central Asia
The remarkable African Planation Surface
It’s plain to see
Creation in-depth: The mountains rose
Visual evidence for Noah’s Flood
Defining the Flood/post-Flood boundary in sedimentary rocks


Further Reading
Geology Questions and Answers


References and notes

  1. Oard, M.J., Massive erosion of continents demonstrates Flood runoff, Creation 35(3):44–47, 2013. 
  2. Oard, M.J., Surficial continental erosion places the Flood/post-Flood boundary in the late Cenozoic. J. Creation 27(2):62–70, 2013. 
  3. There likely was significant continental erosion during Walker’s Zenithic Phase at the peak of the Flood in shallow areas based on the research of Baumgardner. But for simplicity, I will lump it all into the Recessive Stage. See Baumgardner, J.R., Explaining the continental fossil-bearing sediment record in terms of the Genesis Flood: insights from numerical modeling of erosion, sediment transport, and deposition processes on a global scale; in: Horstemeyer, M. (Ed), Proceedings of the Seventh International Conference on Creationism, Technical Symposium Sessions, Creation Science Fellowship, Pittsburgh, PA, 2013.
  4. Walker, T., A Biblical geological model; in; Walsh, R.E. (Ed.), Proceedings of the Third International Conference on Creationism, Technical Symposium Sessions, Creation Science Fellowship, Pittsburgh, PA, pp. 581–592, 1994. 
  5. Oard, M.J., The origin of Grand Canyon Part IV: the great denudation, Creation Research Society Quarterly 47(1):146–157, 2010.
  6. Schmidt, K.-H., The significance of scarp retreat for Cenozoic landform evolution on the Colorado Plateau, USA, Earth Surface Processes and Landforms 14:93–105, 1989. 
  7. Oard, M.J., (ebook). A Grand Origin for Grand Canyon, Creation Research Society, Chino Valley, AZ; crsbooks.org/index.php/ebooks/a-grand-origin-for-grand-canyon-downloadable-versions.html, 2014. 
  8. Oard, M.J., Devils Tower can be explained by floodwater runoff, J. Creation 23(2):124–127, 2009. 
  9. Oard, M.J. and Klevberg, P., The Green River Formation very likely did not form in a postdiluvial lake, Answers Research J. 1:99–108, 2008. 
  10. Ollier, C.D. and Marker, M.E., The Great Escarpment of Southern Africa, Zeitschrift für Geomorphologie N.F. 54:37–56, 1985
  11. Oard, M.J., Flood by Design: Receding water shapes the earth’s surface, Master Books, Green Forest, AR, 2008. 
  12. Oard, M.J., (ebook). Earth’s Surface Shaped by Genesis Flood Runoff, michael.oards.net?GenesisFloodRunoff.htm, 2013. 
  13. catalog.data.gov/dataset/total-sediment-thickness-of-the-worlds-oceans-marginal-seas#.
  14. Hower, J.C. and Rimmer, S.M., Coal rank trends in the Central Appalachian coalfield: Virginia, West Virginia, and Kentucky, Organic Geochemistry 17(2):161–173, 1991. 
  15. Friedman, G.M. and Sanders, J.E., Time-temperature-burial significance of Devonian anthracite implies former great (~6.5 km) depth of burial of Catskill Mountains, New York, Geology 10:93–96, 1982. 
  16. In using coal rank, I am assuming the present geothermal gradient in the rock, which likely would have been quite different during Flood deposition. That is why coal rank is a rough estimate. 
  17. Poag, C.W. and Sevon, W.D., A record of Appalachian denudation in postrift Mesozoic and Cenozoic sedimentary deposits of the US middle Atlantic continental margin. Geomorphology 2:119–157, 1989. 
  18. Oard, M.J., Origin of Appalachian geomorphology Part I: erosion by retreating Floodwater and the formation of the continental margin, Creation Research Society Quarterly 48(1):33–48, 2011. 
  19. Poag and Sevon, ref. 17, p. 119. 
  20. Poag, C.W., US middle Atlantic continental rise: provenance, dispersal, and deposition of Jurassic to Quaternary sediments; in: Poag, C.W. and de Graciansky, P.C. (Eds.), Geological Evolution of Atlantic Continental Rises, Van Nostrand Reinhold, New York, pp. 100–156, 1992.
  21. Oard, M.J., Origin of Appalachian geomorphology Part II: surficial erosion surfaces, Creation Research Society Quarterly 48(2):105–122, 2011.
  22. Oard, M.J., Origin of Appalachian geomorphology Part III: channelized erosion late in the Flood, Creation Research Society Quarterly 48(4):329–351, 2012. 
  23. Lee, J., A survey of transverse drainages in the Susquehanna River basin, Pennsylvania, Geomorphology 186:50–67, 2013.
  24. Yang, C.T., Sediment Transport Theory and Practice,  McGraw-Hill, New York, 1996. 
  25. Guillocheau, F., Rouby, D., Robin, C., Helm, C., Rolland, N., Le Carlier de Veslud, C., and Braun, J., Quantification and causes of the terrigeneous sediment budget at the scale of a continual margin: a new method applied to the Namibia-Southwest African margin, Basin Research 24:3–20, 2012. 
  26. The differential vertical motion is relative to the present continents and ocean floors because we do not know whether just the ocean basins sank, just the continents rose, or both changed elevation. 
  27. King, L.C., Wandering Continents and Spreading Sea Floors on an Expanding Earth, John Wiley and Sons, New York, 1983. 
  28. Heck, F.R., Mesozoic extension in the southern Appalachians, Geology 17:711–714, 1989. 
  29. Burke, K. and Gunnell, Y., The African Erosion Surface: A continental-scale synthesis of geomorphology, tectonics, and environmental change over the past 180 million years, Geological Society of America Memoir 201, Boulder, CO, 2008. 
  30. Oard, M.J., The remarkable African planation surface, J. Creation 25(1):111–122, 2011.
  31. Crickmay, C.H., The Work of the River: A critical study of the central aspects of geomorphology, American Elsevier Publishing Co., New York, 1974.
  32. Ollier, C.D. and Marker, M.E., The Great Escarpment of Southern Africa, Zeitschrift für Geomorphologie N.F. 54:37–56, 1985. 
  33. Matmon, A., Mushkin, A., Enzel, Y., Grodek, T., and the ASTER Team, Erosion of a granite inselberg, Gross Spitzkoppe, Namib Desert, Geomorphology 201:52–59, 2013. 
  34. Twidale, C.R., Geomorphology, Thomas Nelson, Melbourne, 1968. 
  35. Blatt, H., Determination of mean sediment thickness in the crust: a sedimentologic method, GSA Bulletin 81:255–262, 1970. 
  36. Reed, J.K. and Oard, M.J., Three early arguments for deep time—part 3: the ‘geognostic pile’, J. Creation 26(2):100–109, 2012. 
  37. One can assume that at the peak of the Flood, the top layers would have been unconsolidated sediments, becoming more consolidated with depth, resulting in rapid erosion during Flood runoff. 
  38. Bally, A.W., Phanerozoic basins of North America; in: Bally, A.W. and Palmer A.R. (Eds.), The Geology of North America—An overview, vol. A, Geological Society of America, Boulder, CO, pp. 397–446, 1989. 



*참조 : 대륙에 발생되어 있는 대규모의 거대한 침식은 대홍수가 휩쓸고 간 증거이다.
http://creation.kr/Sediments/?idx=1288667&bmode=view

대륙 해안의 거대한 급경사면들은 노아 홍수의 물러가던 물에 의해 형성되었다.
http://creation.kr/EvidenceofFlood/?idx=1288481&bmode=view

대륙 지표면의 침식은 노아 홍수/홍수 후 경계를 신생대 후기로 위치시킨다.
http://creation.kr/EvidenceofFlood/?idx=1288476&bmode=view

노아 홍수 후퇴기에 형성된 아시아 중남부의 판상 자갈층 : 홍수/홍수 후 경계는 신생대 후기일 가능성이 높다.
http://creation.kr/EvidenceofFlood/?idx=1288475&bmode=view

호주 캔버라 지역에서 제거된 300m 두께의 페름기 지층 : 물러가던 노아 홍수 물에 의한 막대한 침식 사례
http://creation.kr/EvidenceofFlood/?idx=4866220&bmode=view

노아 홍수의 물은 대륙에서 어떻게 물러갔는가?
http://creation.kr/EvidenceofFlood/?idx=1288472&bmode=view

강이 산을 자르고 지나갈 수 있는가? : 노아 홍수의 후퇴하는 물로 파여진 수극들
http://creation.kr/Sediments/?idx=1288676&bmode=view

수극과 풍극은 노아 홍수 후퇴기 동안에 파여졌다.
http://creation.kr/EvidenceofFlood/?idx=2094916&bmode=view

지형학은 노아 홍수의 풍부한 증거들을 제공한다. : 산, 평탄면, 도상구릉, 표석, 수극, 해저협곡의 기원
http://creation.kr/EvidenceofFlood/?idx=1288470&bmode=view

도상구릉 : 대륙에서 빠르게 물러갔던 대홍수의 증거
http://creation.kr/Sediments/?idx=1757347&bmode=view

악마의 탑(데블스타워)과 성경적 해석 : 거대한 현무암 기둥들은 성경적 시간틀과 모순되는가?
http://creation.kr/Sediments/?idx=1288580&bmode=view

콜롬비아 과타페 바위의 형성과 노아의 홍수
http://creation.kr/Sediments/?idx=4954669&bmode=view

레드 뷰트 : 대홍수의 잔존물
http://creation.kr/Sediments/?idx=1288617&bmode=view

미국 몬태나 산맥에서 발견되는 노아 홍수의 증거 : 산을 관통하여 흐르는 강(수극)과 산꼭대기의 퇴적층 잔해
http://creation.kr/Sediments/?idx=1288691&bmode=view

후퇴하는 홍수물에 의해 파여진 호주 시드니 지역 : 수극으로 불려지는 협곡들은 노아 홍수를 증거한다.
http://creation.kr/Sediments/?idx=1288649&bmode=view

호주 핀크 강의 경로(수극)는 노아 홍수의 증거를 제공한다.
http://creation.kr/EvidenceofFlood/?idx=4839651&bmode=view

창세기 홍수의 강력한 증거인 평탄한 지표면
http://creation.kr/Sediments/?idx=1288666&bmode=view

전 지구적 홍수를 가리키는 아프리카의 평탄면
http://creation.kr/EvidenceofFlood/?idx=1288473&bmode=view

동일과정설의 수수께끼인 산꼭대기의 평탄면
http://creation.kr/Sediments/?idx=1288689&bmode=view

남극 빙상 아래에서 발견된 평탄면
http://creation.kr/EvidenceofFlood/?idx=3870071&bmode=view

대륙을 가로질러 운반된 모래들 : 창세기 홍수의 지질학적 증거들 4
http://creation.kr/Sediments/?idx=1288628&bmode=view

노아 홍수가 운반했던 막대한 량의 규암 자갈들 Part 1 : 로키산맥 동쪽 지역
http://creation.kr/EvidenceofFlood/?idx=5897494&bmode=view

노아 홍수가 운반했던 막대한 량의 규암 자갈들 Part 2 : 로키산맥의 서쪽 지역
http://creation.kr/EvidenceofFlood/?idx=5935314&bmode=view

노아 홍수가 운반했던 막대한 량의 규암 자갈들 - Part 4 : 홍수 모델은 동일과정설적 수수께끼들을 쉽게 설명한다.
http://creation.kr/Sediments/?idx=1288599&bmode=view

나바호 사암층의 출처로서 침식된 애팔래치아 산맥의 규산쇄설물
http://creation.kr/Sediments/?idx=1288599&bmode=view

콜로라도 고원의 사암은 애팔래치아 산맥에서 유래했는가?
http://creation.kr/Sediments/?idx=1288685&bmode=view

창세기 대홍수의 격변을 증언하는 결정적 물증! : 스페인 바르셀로나 몬세라트 암반의 절규
http://creation.kr/EvidenceofFlood/?idx=1288486&bmode=view

엄청난 량의 워퍼 모래는 전 지구적 홍수를 가리킨다.
http://creation.kr/Sediments/?idx=1288671&bmode=view

엄청난 량의 워퍼 모래는 전 지구적 홍수를 가리킨다. 2 : 광대한 노플렛 사암층은 또 하나의 워퍼 모래이다.
http://creation.kr/Sediments/?idx=1288695&bmode=view

그랜드 캐니언의 형성 기원에 대한 “물러가는 홍수 시나리오” 1
http://creation.kr/Sediments/?idx=1288680&bmode=view

그랜드 캐니언의 형성 기원에 대한 “물러가는 홍수 시나리오” 2
http://creation.kr/Sediments/?idx=1288681&bmode=view

그랜드 캐니언의 구불구불한 협곡(또는 사행천)은 노아 홍수를 부정하는가? : 후퇴하는 노아 홍수의 물로 설명되는 말굽협곡.
http://creation.kr/Sediments/?idx=1288677&bmode=view

노아의 대홍수 동안에 계곡과 캐년은 어떻게 형성되었나?
http://creation.kr/EvidenceofFlood/?idx=1288487&bmode=view

그랜드 캐니언보다 큰 해저협곡들은 물러가던 노아 홍수의 물에 의해 파여졌다.
http://creation.kr/EvidenceofFlood#2954870

NASA의 지구 사진과 노아 홍수에 관한 한 질문 : 노아 홍수를 일으킨 물은 어디로 갔는가?
http://creation.kr/EvidenceofFlood/?idx=1288443&bmode=view

성경적 시간 틀로 지질주상도 이해하기
http://creation.kr/BiblicalChronology/?idx=1289279&bmode=view

지질주상도는 많은 예외들을 가지는 전 지구적 홍수의 일반적 순서이다.
http://creation.kr/Geology/?idx=1290555&bmode=view

성경적 지질학 (Biblical geology)
http://creation.kr/Geology/?idx=1290501&bmode=view

유럽 대륙의 층서학은 전 지구적 홍수를 지지한다.
http://creation.kr/EvidenceofFlood/?idx=2816478&bmode=view

코코니노 사암층은 사막 모래언덕이 아니라, 물 아래서 퇴적되었다 : 노아의 홍수를 반증한다는 가장 강력한 논거가 기각됐다!
http://creation.kr/EvidenceofFlood/?idx=3612173&bmode=view

윌페나 파운드의 장엄한 지형 : 노아의 홍수 대격변은 이것을 어떻게 설명하는가?
http://creation.kr/Sediments/?idx=1288675&bmode=view

전 지구적 홍수의 증거들로 가득한 이 세계
http://creation.kr/EvidenceofFlood/?idx=1288477&bmode=view

큰 깊음의 샘들, 노아 홍수, 그리고 거대층연속체들
http://creation.kr/EvidenceofFlood/?idx=1288468&bmode=view

퇴적층에 기초한 해수면 곡선 : 3개 대륙에서 관측되는 동일한 퇴적 패턴은 한 번의 전 지구적 홍수를 증거한다.
http://creation.kr/EvidenceofFlood/?idx=1757330&bmode=view

아프리카와 북미 대륙에 서로 유사한 거대한 퇴적지층들 : 한 번의 전 지구적 홍수에 대한 강력한 증거
http://creation.kr/HotIssues/?idx=1288466&bmode=view

셰일오일과 셰일가스가 존재하는 이유는? : 광대한 셰일 층들은 전 지구적 홍수를 가리키고 있다.
http://creation.kr/EvidenceofFlood/?idx=1288281&bmode=view

석유, 셰일오일, 천연가스의 기원과 최근의 전 지구적 홍수.
http://creation.kr/EvidenceofFlood/?idx=1288282&bmode=view

석탄 : 전 지구적 대홍수의 기념물
http://creation.kr/Sediments/?idx=1288657&bmode=view

전 지구적 대홍수, 격변적 판구조론, 그리고 지구의 역사
http://creation.kr/EvidenceofFlood/?idx=1288483&bmode=view

황토(뢰스)의 기원과 노아홍수, 그리고 한 번의 빙하기
http://creation.kr/EvidenceofFlood/?idx=1288471&bmode=view


▶ 압도적인 노아 홍수의 지질학적 증거들 (주제별 자료실)
http://creation.kr/Series/?idx=1833879&bmode=view

▶ Global Flood (CMI)
https://creation.com/topics/global-flood


출처 : Journal of Creation 31(3):74–81, December 2017.
주소 : https://creation.com/tremendous-erosion-flood

번역 : 미디어위원회



서울특별시 종로구 창경궁로26길 28-3

대표전화 02-419-6465  /  팩스 02-451-0130  /  desk@creation.kr

고유번호 : 219-82-00916             Copyright ⓒ 한국창조과학회

상호명 : (주)창조과학미디어  /  대표자 : 박영민

사업자번호 : 120-87-70892

통신판매업신고 : 제 2021-서울종로-1605 호

주소 : 서울특별시 종로구 창경궁로26길 28-5

대표전화 : 02-419-6484

개인정보책임자 : 김광