빙하기 탐구 - 멈춰버린 시간. 8장 : 폭설

빙하기 탐구 - 멈춰버린 시간. 8장 : 폭설

 (Frozen in Time, Chapter 8. The Snowblitz)

by Michael J. Oard, Ph.D.


 창세기의 홍수는 빙하기에 필요한 두 가지 필수 조건을 제공한다. 이 시점부터 우리는 기초적인 기상학을 사용하여, 폭풍의 패턴과 빙상이 발생되는 지점을 예측할 수 있다.

창세기의 홍수는 독특하고 섭리적으로 빙하기에 필요한 두 가지 필수요소를 제공한다. 이 시점부터 우리는 기초적인 기상학을 사용하여 폭풍의 패턴과 빙상이 발생되는 지점을 예측할 수 있다. 따뜻한 대양과 인접한 중위도 및 고위도 대륙에서 차가운 여름의 역동적인 결합으로 인해 일부 지역에서는 신속하게 빙상(ice sheets)이 형성되었을 것이다. 어떤 지역에서는 육지 쪽으로 부는 온난한 바람에 의해 일부 지역이 너무 따뜻하게 유지되기 때문에, 그곳에 빙상이 발생되기 위해서는 대양이 충분히 냉각될 때까지 기다려야 했다. 놀랍게도, 알래스카와 시베리아의 저지대와 같이 처음 보았을 때 빙하 작용에 이상적으로 보이는 몇몇 지역은 전혀 빙하 작용이 일어나지 않았을 수도 있다.

”폭설(Snowblitz)”은 넓은 지역이 눈과 얼음으로 빠르게 덮이는 방법을 설명하는데 사용되는 단어이다. 이것은 빙상이 고위도의 높은 산에서 시작하여 서서히 남쪽으로 뻗어 나온다는 생각과 대조된다. 대홍수 이후의 빙하기 모델은 노아 홍수 직후에 빙하기가 한꺼번에 넓은 지역에서 발생했다는 것을 보여준다.[1]


눈과 얼음의 빠른 축적(Rapid accumulation of snow and ice)

빙하기에 내린 대부분의 눈은 연속적인 강설보다는 폭풍과 관련이 있었다. 폭풍 진로의 위치를 이해하는 것은 눈과 얼음이 처음으로 쌓인 곳을 예측하는 데 필수적이다. 오늘날의 기후에서 폭풍은 다양한 경로를 취하지만, 지구의 지형과 전반적인 기온 패턴 때문에, 폭풍은 특정 지역을 선호한다. 현재는 북대서양의 아이슬란드와 북태평양의 알류샨 섬에서 가장 많이 발생한다. 이것들을 각각 아이슬란드 저기압과 알류샨 저기압이라고 부른다.

빙하기에는 폭풍도 특정 경로를 선호하는 경향이 있었다. 육지와 바다의 엄청난 온도 차이 때문에, 북반구의 폭풍우는 성장하고 있는 빙상의 바로 남쪽과 아시아와 북아메리카의 동해안을 따라 더욱 자주 발생했을 것이다(그림 8.1)[2]. 이러한 폭풍의 진로는 상당히 많은 무질서한 폭풍 진로들의 평균일 수 있다는 것을 기억하는 것이 중요하다.

그림 8.1. 빙하기가 절정에 도달했을 때, 눈과 얼음 분포 및 폭풍 진로. 북아메리카 빙상 안쪽의 원형 지역은 가정된 아이스돔을 나타낸다. 아직 바다 얼음이 거의 형성되지 않았다.

북반구에서 눈보라에 의한 대부분의 강설은 폭풍의 북쪽과 북서쪽에 떨어진다(그림 8.2 참조). 이곳은 폭풍의 가장 추운 부분이다. 발달 중인 빙상의 바로 남쪽에 있는 주요 폭풍 진로의 영향으로 빙상은 특히 주변을 따라 계속 증가했을 것이다. 대홍수 이후 처음 몇 년 동안, 눈은 중위도와 고위도의 대륙 내부의 넓은 지역을 덮었을 것이다. 빙하기는 캐나다와 미국 북부의 많은 지역을 즉시 눈으로 덮고, 많은 산악지대에 눈을 축적시키는 폭설로 시작했을 것이다. 빙하는 북부 캐나다에서 발달하여 미국 북부로 천천히 이동할 필요가 없었다.

그림 8.2. 빙하기에 전형적이어야 하는 북동풍의 폭풍. 점선 안에 강수 지역이 있음을 보여준다. 저기압 중심(L)의 북쪽 화살표가 이동 방향이다. 여러 개의 화살표는 바람의 방향이다.

화산재와 가스가 성층권에서 두꺼운 채로 유지되고, 중위도 및 고위도의 해양 표면이 따뜻하게 유지되는 한, 눈이 계속해서 떨어지면서 빠르게 쌓였을 것이다. 빙하기 초기에 주로 빙상의 가장자리를 따라 미약하게 여름 해빙이 일어났을 가능성이 높다.

몇몇 작은 기상 작용은 성층권의 화산재와 먼지에 의한 냉각을 강화하거나 약화시켰을 것이다. 그 중 하나는 적설 냉각(snow cover cooling)이다. 적설이 진행되면 눈의 햇빛에 대한 반사율이 높아져서, 기온이 6°C 정도 더 낮아진다. 이것은 이미 화산재와 가스로 인한 냉각을 강화시킨다.

눈이 빠르고 지속적으로 축적되도록 하기 위해서는, 해수면 온도가 중위도 및 고위도에서 따뜻하게 유지되어야 한다. 그러나 바다에서 급격한 증발이 일어나고, 차가운 대륙성 공기가 바다 위로 불면서 해수면이 냉각된다. 이로 인해 증발 감쇄 효과가 일어난다. 그런데 차가운 지표수는 침하하고, 아래에서의 더 따뜻한 물이 대체되어, 잠시 동안 그것에 저항한다. 또한, 강화된 해양 순환은 계속해서 더 남쪽에서 더 높은 위도로 따뜻한 물을 공급할 것이다(그림 8.3). 따라서 냉각 효과에도 불구하고, 중위도 및 고위도에서 해양 표면 온도는 오랫동안 상대적으로 따뜻하게 유지되어, 폭설을 위해 필요한 많은 양의 수증기를 보장한다.

빙하기 때에도 여전히 태양의 고도가 변화하기 때문에, 계절은 있었지만 여름은 더 시원했으며, 겨울은 더 온화했을 것이다. 대륙 지역에 걸친 계절적 기온 차이는 오늘날 우리가 보는 것보다 훨씬 적었을 것이며, 대략 8°C 정도로 예상된다.

빠른 빙하 형성의 가능성은 북아메리카의 동해안에서 잘 알려진 유형의 폭풍인 북동풍의 폭풍(그림 8.2)을 고려하여 입증할 수 있다. 이 폭풍은 일반적으로 25cm 이상의 눈을 퍼붓는다. 1993년 3월 12~15일에 있었던 세기의 폭풍은 미국 동부에 눈을 140cm까지 퍼부었다.[3] 그림 8.4는 대서양으로부터의 따뜻하고 습한 공기를 가진 북동풍이 북부지역을 통과하며 육지의 차갑고 조밀한 공기를 표면 위에서 반전시키며 올라가는 단면도를 보여주는 것이다. 사실상, 따뜻하고 습한 공기가 차가운 공기 위를 덮으며, 빙상이 발달한 대부분의 지역에서 반전이 일어났을 것으로 예상한다. 빙하기 시대에는 오늘날 우리가 경험하는 것보다 북동풍이 훨씬 빈번하고 강했을 것이다. 그 폭풍들은 일반적으로 발달하는 빙상과 따뜻한 바다 사이의 더 큰 온도 차이 때문에, 주로 두 배 이상의 면적에 걸쳐 3배 정도의 강설을 만들었을 것이다.

그림 8.4. 북동풍이 지나는 북부 지역을 통과하는 대기 단면. 직선 경사 선은 차가운 공기와 따뜻한 공기 사이의 경계이다.

북동풍이 폭설을 가져올 수 있는 가능성을 보여주기 위해, 동부 해안과 평행 이동하며 1년 동안, 매주 한번 불어오는 북동풍이 뉴잉글랜드와 캐나다 남동부에 50cm의 눈을 내리게 했다고 가정하자. 이것은 이러한 유형의 폭풍에 대해 평균의 두 배 정도의 양이지만, 빙하기 동안에 가능한 수증기 양을 고려하면 다소 보수적인 수치이다. 물에 대한 눈의 비율은 일반적으로 1 cm의 물에 대해 눈이 10cm이다. 눈이 얼음으로 변환 된 후에, 이 50cm의 눈은 약 5cm의 얼음이 된다. 빙하기의 첫해에, 여름에 눈이 녹지 않았다고 가정하면, 얼음이 264cm 쌓였을 것이다. 이 비율이 200년 동안 지속되었다면, 얼음의 깊이는 빙하기가 발달하기에 충분할 정도인 530m가 되었을 것이다.

캐나다 남동부와 뉴잉글랜드를 가로지르는 또 다른 폭풍 진로를 가정해 보자. 북동풍에 더하여, 빙붕의 남쪽 경계와 평행하게 뻗은 주된 폭풍 진로가 되었을 것이다(그림 8.1 참조). 이것은 육상의 경로를 가지며, 동해안의 따뜻한 대양에서 공급을 받는 북동풍만큼의 수증기를 포함하지 않았을 것이다. 200년 동안에, 대륙 폭풍 경로는 150m의 얼음을 추가할 수 있다. 따라서, 불과 200년 안에 두 개의 주요 폭풍 진로로부터 670m 정도의 얼음이 쌓일 수 있다.


초기의 빙상 (The early ice sheets)

빙하기 초반에 빙하기의 시기와 확산에 기여할 수 있는 요인은 다양하다. 빙상(ice sheets, 대륙빙하)은 주된 폭풍 진로와 수분 공급원인 따뜻한 바다에 가장 가까운 지역에서 빠르게 축적되었을 것이다. 따뜻한 바다와 너무 가까운 지역에서는 빙하기가 지연될 것이다. 따뜻한 대양은 그 위의 공기를 가열하며, 육지쪽으로의 공기가 내륙으로 퍼져 나가면서 인접한 육지를 비교적 따뜻하게 유지했을 것이다. 이것이 워싱톤 주의 시애틀이 영하 이하로 떨어지지 않고, 거의 눈을 볼 수 없는 이유이다.

그림 8.5. 대홍수 이후 빙하기가 시작될 때 북반구의 눈 덮힌 지역 및 대폭풍(실선) 및 소푹풍(점선)의 가상 진로. (Ruddiman과 McIntyre의 그림을 다시 그렸음)[4].

그림 8.5는 초기 얼음 생성의 예상 영역을 보여준다. 캐나다 남동부와 뉴잉글랜드는 눈과 얼음이 빠르게 축적되기에 매우 유리한 지역에 놓여 있다. 이것은 래브라도가 캐나다 중부 및 동부에 있는 로렌타이드 빙상(Laurentide Ice Sheet)의 얼음 돔 중 하나였던 이유일 것이다(9장의 그림 9.3 참조). 수분 공급원으로부터 멀리 떨어져있는 캐나다의 남쪽 내부와 미국 중서부의 북쪽은 이 당시 비교적 얇은 빙상을 가지고 있었을 것이다.

한동안 스칸디나비아와 브리티시 컬럼비아의 저지대는 상대적으로 따뜻한 공기가 강하게 육지쪽으로 불어와, 너무 따뜻해서 얼음이 만들어지지 못했을 것이다. 그러나 산들은 빠르게 빙모가 형성되어서, 그것이 점차적으로 계곡으로 내려가는 경향을 보였을 것이다. 발틱해와 북대서양이 따뜻했기 때문에, 유럽 대륙에 눈과 얼음이 쌓이는 것이 지연되었을 것이다. 따뜻한 물에 둘러싸인 영국 제도는 처음에는 전혀 빙하가 되지 않았을 것이다. 이때 그린란드 역시 따뜻한 물에 둘러싸여 있었을 것이고, 대부분 산에만 눈과 얼음이 있었을 것이다.

북극해의 경계를 이루는 지역인 빙상의 북부 지역에는 눈과 얼음이 흥미로운 분포를 했을 것이다. 대홍수 직후에 북극해는 수온이 매우 따뜻했을 것이므로, 바다 얼음이 없었을 것임을 기억하라. 빙하기의 처음 몇 년 동안은, 이 따뜻한 물이 종종 그것을 압도하는 차가운 대기 질량의 영향을 받기 쉽다. 이것은 강한 증발을 일으켰을 것이다. 동시에, 따뜻한 바다와의 접촉 및 응축될 때, 수증기로부터 잠열의 방출에 의해 공기가 가열될 것이다. 따뜻한 공기는 빙하기가 시작될 때, 북극해 경계지역을 얼음이 없는 상태로 유지했을 것이다. 그러나 그 지역의 무거운 수분은 눈과 얼음이 북극해에서 내륙으로 더 멀리 쌓이게 했을 것이다. 이것은 Donn과 Ewing의 빙하기 이론과 같다(6장을 보라). 이것은 허드슨 만 북서부의 로렌타이드 빙상의 키와틴(Keewatin) 부분이 빙하기 동안에 얼음 돔(ice dome)이었던 이유를 설명해 준다(9장의 그림 9.3 참조).

반면에, 동일과정설적 빙하기 모델은 이 얼음 돔을 설명하는데 큰 어려움을 겪고 있다. Donn과 Ewing[5]은 이 문제를 다음과 같이 진술한다:

커다란 로렌타이드 빙상의 남쪽으로의 뚜렷한 장벽 효과를 고려할 때, 캐나다 빙상이 북서쪽으로 현저히 확장을(키와틴 지역으로) 유지하기 위한 수분 공급원을 상상하기 어렵다.

오늘날 키와틴 지역은 북미에서 가장 건조한 곳 중 하나이다. 동일과정설 과학자들의 생각으로, 빙하기 동안 키와틴 지역은 너무 북쪽에 있어서 많은 강수가 이루어질 수 없었다. 동일과정설 과학자들의 시나리오에서 북극해는 해빙으로 덮여 있었을 것이기 때문에 그 바다로부터 습기가 오는 것을 가정할 수 없다. 그러나 대홍수 이후 빙하기 모델에서는 북극해가 얼음이 없고 따뜻했기 때문에, 키와틴의 얼음 돔을 설명될 수 있다.

대홍수 직후 따뜻한 물의 분포는 또 다른 흥미로운 결과를 낳는다. 오대호 및 허드슨만( Great Lakes and Hudson Bay)은 따뜻한 물의 커다란 수역이 되어, 그 위와 가까이에 얼음이 쌓이는 것을 억제했을 가능성이 있다. 이 수역에서 강한 증발은 그들 주변, 그러나 해안으로부터 어느 정도 떨어져 있는 곳에 눈과 얼음을 만드는데 도움이 되었을 것이다.

북미의 록키 산맥 바로 동쪽 지역은 태평양에서 오는 따뜻한 공기가 산을 타고 넘은 후, 온화한 치누크 바람으로 내려오기 때문에, 이 시기에는 빙하가 될 수 없었다. 이것을 얼음이 없는 복도( ice-free corridor)라고 불린다. 또한 따뜻한 북극해 및 북태평양 바다는 이 당시 대부분의 시베리아와 알래스카를 빙하가 되지 못하게 했다. 시베리아와 알래스카의 저지대와 얼음이 없는 복도가 충분히 따뜻했기 때문에, 빙하기 초기와 중기 동안 모든 동물들이 아메리카 대륙으로 이주할 수 있었다. 이제는 빙하기 동안 털북숭이 매머드가 시베리아와 알래스카에서 살 수 있었던 이유와 저지대에 빙하가 없었던 이유에 대한 아이디어를 얻게 된다.

남반구는 남극대륙 연안까지 뻗어있는 큰 규모의 따뜻한 바다로 인하여, 다소 단순한 폭풍 패턴을 가졌을 것이다. 따뜻한 물이 남극 동쪽 해안에 접하고 있어서, 폭풍의 주 진로는 이 차가운 대륙 주위를 돌았을 것이다. 이 거대한 육지 면적은 특히 남반구의 광대한 해양에서 오는 따뜻한 물을 고려할 때, 급속하게 빙하가 형성되었을 것이다. 남극 대륙의 서쪽은 더 복잡했을 것이다. 남극 대륙 서쪽의 상당 부분은 일련의 섬들로서 아직도 사이사이에 따뜻한 물이 있었을 것이다. 빙하기 초기에는 남극 대륙 서쪽의 산들 만이 빙모(ice caps)를 가졌을 가능성이 있다(그림 8.6).


그림 8.6. 대홍수 이후 빙하기가 시작될 때 남극 대륙의 눈 덮힌 지역(어두운 부분)과 대폭풍(실선) 및 소푹풍(점선)의 가상 진로

빙하기의 초기에는 남반구와 열대 지역의 높은 산지 중 일부만이 빙모를 가지고 있었을 가능성이 있지만, 나중에는 이것이 작아졌을 것이다.


습윤 사막 (The wet deserts)

3장에 열거된 빙하기의 주요한 수수께끼 중 하나는 현재의 사막과 반건조(semi-arid) 지역에 있는 큰 호수, 강, 수생 화석의 증거이다. 창세기 대홍수와 창세기 대홍수로 인한 빙하기는 ”습윤 사막”의 증거를 쉽게 설명할 수 있다.

그림 8.1에서 보인 대폭풍 진로 외에, 빙하기 동안의 대기 순환을 예측하는 것은 도전을 받고 있다. 또한 이 순환계가 지구의 강수량을 결정한다. 그 이유는 따뜻한 바닷물과 대기의 증발은 대기 순환에 크게 영향을 주기 때문이다. 바다 위의 대기로 직접 유입되는 수분의 영향과 북반구 주변으로 발산하는 잠열의 방출은 계산하기 어렵다. 대륙이 차갑고 계절에 따른 차이가 적다는 것은, 오늘날과 너무 다르기 때문에 어려움을 더한다. 이러한 조건에 가까운 어떤 것을 가지고 대기에 대한 컴퓨터 시뮬레이션을 수행한 적이 없다. 창조연구소(Institute for Creation Research)의 래리 바디만(Larry Vardiman)[6]은 따뜻한 바다를 이용한 간단한 기후 모델로 몇 가지 작업을 수행했으며, 많은 독특한 가능성을 발견했다. 이것은 오늘날과 크게 다른 대기 패턴을 암시한다. 폭풍 진로, 많은 강우대, 몬순 및 기타 기후 특성은 이 빙하기 시대에 독특했었을 것이다. 아마도 장래에는 정교한 대양-대기 기후 시뮬레이션을 수행할 수 있을 것이다.

한 가지 언급할 수 있는 것은 그러한 독특한 빙하기 기후가 단순히 따뜻한 바다에서 더 많은 증발로 인해 지구 전체에 훨씬 더 많은 강우를 일으킨다는 것이다.

게다가, 이 강우는 오늘날과 다르게 분포되었을 것이다. 이 기후는 현재 미국 남서부와 같이 건조하고 반 건조한 지역에서 풍부한 강우를 일으켰을 가능성이 있다. 물론 미국 남서부의 호수에 있는 모든 물이 빙하기의 많은 강우로부터 온 것일 필요는 없다. 대홍수가 끝나갈 무렵 육지가 올라가고, 대륙에서 대홍수 물이 빠져 나감에 따라, 물이 배출구가 없는 유역에 갇히게 되었을 것이다. 대홍수 이후의 빙하기 동안의 강우는 단순히 대홍수로부터 남겨진 호수를 유지했을 것이다. 이 호수의 유지에 대한 증거는 캘리포니아 모노호(Mono Lake) 근처의 말단 빙퇴석 및 유타주 중부의 와사치 산맥(Wasatch Range)에 연하여 있는 계곡 가장자리에 새겨진 해변 옆에서 볼 수 있다(그림 8.7 및 8.8).

그림 8.7. 빙하기 동안 모노호가 훨씬 더 높이 있었을 때, 말단 빙퇴석으로 패인 해안선.

그림 8.8. 유타주 와사치 산맥의 Little Cottonwood Creek와 Bells Canyons 입구에 있는 빙퇴석 위에 있는 보너빌(Bonneville) 호수의 해안선

사하라 사막은 ”물이 많았던 사막”의 또 다른 좋은 예이다. 그곳은 수백 년 동안 상당히 습한 기후였다. 이것은 그 지역에 살고 있는 사람들과 동물들에게 건강하고 번성하는 환경을 제공했다.

빙하기 말기에 주로 빙하가 물러가던 시기 동안에 거대한 건조작용이 일어나서 오늘날 우리가 관찰하는 사막과 반건조 지역이 생성되었다. 주목해야 하는 중요한 점은, 대홍수가 초래한 빙하기 모델은 습윤 사막을 설명할 수 있는 반면, 차가운 빙하기를 주장하는 동일과정설 모델은 습윤 사막을 설명하는 데에 커다란 어려움을 겪고 있다는 것이다.



Footnotes
1. Oard, M.J., An Ice Age Caused by the Genesis Flood, Institute for Creation Research, El Cajon, CA, pp. 38–65, 1990.
2. Ibid., pp. 46–55.
3. Oard, M.J., The Weather Book, Master Books, Green Forest, AR, p. 56–57, 1997.
4. Ruddiman, W. F., and A. McIntyre, Warmth of the subpolar north Atlantic Ocean during Northern Hemisphere ice-sheet growth, Science, 204(4389): 173–175, 1979.
5. Donn, W.L., and M. Ewing, The theory of an ice-free Arctic Ocean; in: The causes of climatic change, J.M. Mitchell Jr. (Ed.), Meteorological Monographs 8(30), American Meteorological Society, Boston, MA, p. 102–103, 1968.
6. Vardiman, L., Climates before and after the Genesis flood: Numerical models and their implications, Institute for Creation Research, El Cajon, CA, p. 81–92, 2001.


*Michael Oard의 책 'Frozen in Time” 원문.

1. Frozen mammoth carcasses in Siberia
http://www.answersingenesis.org/home/area/fit/chapter1.asp
2. Why live in Siberia?
http://www.answersingenesis.org/home/area/fit/chapter2.asp
3. The mystery of the Ice Age
http://www.answersingenesis.org/home/area/fit/chapter3.asp
4. A mammoth number of mammoth hypotheses
http://www.answersingenesis.org/home/area/fit/chapter4.asp
5. The extinction wars
http://www.answersingenesis.org/home/area/fit/chapter5.asp
6. The multiplication of ice age theories
http://www.answersingenesis.org/home/area/fit/chapter6.asp
7. The Genesis flood caused the Ice Age
http://www.answersingenesis.org/home/area/fit/chapter7.asp
8. The snowblitz
http://www.answersingenesis.org/home/area/fit/chapter8.asp
9. The peak of the Ice Age
http://www.answersingenesis.org/home/area/fit/chapter9.asp
10. Catastrophic melting
http://www.answersingenesis.org/home/area/fit/chapter10.asp
11. Only one Ice Age
http://www.answersingenesis.org/home/area/fit/chapter11.asp
12. Do ice cores show many tens of thousands of years?
http://www.answersingenesis.org/home/area/fit/chapter12.asp
13. Where was man during the Ice Age?
http://www.answersingenesis.org/home/area/fit/chapter13.asp


번역 - 강기태

링크 - https://answersingenesis.org/environmental-science/ice-age/the-snowblitz/ 

출처 - Frozen in Time



서울특별시 종로구 창경궁로26길 28-3

대표전화 02-419-6465  /  팩스 02-451-0130  /  desk@creation.kr

고유번호 : 219-82-00916             Copyright ⓒ 한국창조과학회

상호명 : (주)창조과학미디어  /  대표자 : 박영민

사업자번호 : 120-87-70892

통신판매업신고 : 제 2021-서울종로-1605 호

주소 : 서울특별시 종로구 창경궁로26길 28-5

대표전화 : 02-419-6484

개인정보책임자 : 김광