태초에 하나님이 천지를 창조하시니라 (창세기 1:1)

LIBRARY

KOREA  ASSOCIATION FOR CREATION RESEARCH

창조설계

Brian Thomas
2016-01-07

동물들의 경이로운 설계 (2015년 톱 뉴스)

(Top 2015 News: Amazing Animal Designs)


      매년 과학자들은 동물들의 새롭고 경이로운 설계를 발견하고 있다. 2015년도 예외는 아니었다. 각 발견은 모든 세대들이 들을 필요가 있는 동일한 메시지를 전해주고 있다. ”하늘이 주의 것이요 땅도 주의 것이라 세계와 그 중에 충만한 것을 주께서 건설하셨나이다 남북을 주께서 창조하셨으니...”[1]


”별난 경이로운” 설계의 사례로, 생물학자들은 보르네오(Borneo)에 있는 정글 박쥐가 낮 시간에 기생충이 없는 보금자리를 사용하기 위해서, 낭상엽 식물(pitcher plants)을 발견하는 수단에 대해서 기술하고 있었다. 이 식물은 박쥐의 배설물로부터 영양분을 얻는다. 그래서 그 생물들은 서로 멋지게 협력하고 있는 것이다. 경이로운 초음파 반사판(sonic reflectors)이 각 낭상엽 식물의 개구부 바로 위에 자라고 있다. 이것은 근처의 박쥐들에게 숨을 수 있는 완벽한 장소에 대한 정보를 주고 있다. 식물의 오목한 반사판으로부터 반사된 박쥐의 초음파는 일반적인 정글 식물들 보다 더 큰 소리로 들리게 된다. 또한 반사판은 인식될 수 있는 3차원적 패턴을 형성하도록, 이 특별한 박쥐의 고음역의 소리에 딱 맞도록 작은 가장자리 면을 가지고 있다. 따라서 박쥐의 초음파는 반사판의 측면을 탐지한다. 그러한 방법으로 박쥐는 빠르게 날아가서 앞에 있는 출구를 발견하는 것이다. 이 정확한 암호화된 구조에 대한 설계도가 어떻게 식물의 DNA 안에 들어갈 수 있었을까? 박쥐의 초음파가 낭상엽 식물의 DNA 내에 암호를 쓸 수는 없는 것이다. 

*참조 : 낭상엽 식물은 박쥐를 유인하도록 설계되어 있었다.
http://www.creation.or.kr/library/itemview.asp?no=6236

보르네오의 작은 박쥐처럼 거대한 흰긴수염고래(blue whales, 대왕고래)는 또한 정확한 설계된 특성을 가지고 있었다. 2015년에 생물학자들은 수염고래(baleen whale)가 살아가는 데에 필요한 특성을 보고하고 있었다. 예를 들어, 장엄한 대왕고래는 크릴새우 떼를 삼키기위해 돌진먹기로, 부채처럼 접혀졌다 펴지는 입을 넓게 벌린 후, 혀 신경(tongue nerve)을 후퇴시키기 위해서, 고무끈 같은 조직을 사용하고 있었다. 수염고래는 그 신경이 고래의 뇌로 보내는 중요한 감각정보 없이는 죽을 수 있다. 수염고래에 있어서 그러한 유연한 혀 신경은 너무도 필요한 것으로 반드시 있어야만 하는 것처럼 보인다.[3] 

*참조 : 수염고래에서 늘어나는 신경이 발견되었다.
http://www.creation.or.kr/library/itemview.asp?no=6160

동물과 사람의 귀 안쪽에 있는 전정기관(vestibular organs, VO)은 균형을 유지할 수 있도록 해준다. 2015년의 생물물리학 연구는 신체와 전정기관 사이의 현명한 의사소통을 밝혀냈다. 그들의 배열과 규약은 모두 자동적으로 조절되는데, 그러한 것들은 우리가 달릴 때 운동 멀미(motion sickness)를 일으키지 않도록 예방해준다. 뇌는 근육을 활성화시키는 신경 신호를 내보낸다. 그 신호는 복사되고, 척수는 한 복사물을 전정기관으로 보낸다. 그리고 뒤에 두 번째의 한 조각이 그 근육을 수정하기 위해서 동일한 복사물을 보낸다. 전정기관은 무엇이 오고 있는지를 알고 있다. 그래서 이러한 방법으로 신체는 자기가 의도한 운동과 외부적 원인에 의한 운동을 구별할 수 있다.[4] 무작위적인 자연적 과정으로는 생겨날 수 없는 것처럼 보이는, 이러한 정교하게 설계된 장치는 전정기관으로 하여금 신체운동을 예측하도록 해준다. 자연적 과정은 이러한 것을 만들어낼 수 없다.


화석(fossils)을 연구하는 과학자들도 2015년에는 동물의 설계된 특성들을 발견하고 있었다. 어떤 공룡(dinosaurs)들은 경늑골(cervical ribs)을 사용하고 있었다. 경늑골은 그들의 긴 목을 지지하는, 각 척추에 부착되어 있는 날씬한 연골성 지지대이다. 최첨단의 신체역학적 모델링은 이 경늑골의 정확한 구조가 공룡 머리의 흔들림을 막아주고, 진동을 완충하여, 용각류 공룡의 목을 안정화시키고 있음을 발견했다. 용각류 공룡 척추 사이의 적합된 관절의 방향성도 각 관절 사이에 힘의 소모 없이, 최대 운동범위를 유지시켜주는 동물의 경이로운 설계였음이 밝혀졌다.[6]

*참조 : 용각류 공룡 목의 경늑골에서 보여지는 놀라운 설계
http://www.creation.or.kr/library/itemview.asp?no=6272

2015년에도 다음 세대에 전해주어야 할 새로운 발견들이 넘쳐났다. ”여호와께서 행하시는 일들이 크시오니 이를 즐거워하는 자들이 다 기리는도다”[7]



References

1.Psalm 89:11, 12a.
2.Thomas, B. 2016. Rats, bats and pitcher plants. Creation. 38 (1): 18-19.
3.Thomas, B. Clever Construction in Rorqual Whales. Creation Science Update. Posted on icr.org May 14, 2015, accessed December 10, 2015.
4.Thomas, B.Discovery: Spine Signals Ears to Maintain Balance. Creation Science Update. Posted on icr.org September 24, 2015, accessed December 10, 2015.
5.Thomas, B.Amazing Sauropod Neck Design in 'Cervical Ribs'. Creation Science Update. Posted on icr.org November 5, 2015, accessed December 10, 2015.
6.Thomas, B.Amazing Design Structures in Long-Necked Dinosaurs. Creation Science Update. Posted on icr.org November 9, 2015, accessed December 10, 2015.
7.Psalm 111:2.



번역 - 미디어위원회

링크 - http://www.icr.org/article/9098 

출처 - ICR News, 2015. 1. 4.

구분 - 4

옛 주소 - http://www.kacr.or.kr/library/itemview.asp?no=6302

참고 : 6291|6290|6289|6199|6178|6165|6163|6162|5896|6161|6159|6137|6069|6034|6001|5997|5975|5962|5976|4041|4056|4197|4637|4728|4764|5088|5224|5287|5351|5352|5382|5426|5430|5438|5504|5551|5567|5596|5600|5656|5671|5694|5700|5746|5754|5759|5772|5773|5814|5839|5845|5856|5891|5894|5902|5920|5926|5932|5933|5934|5956|5959|5960|6245|6272|6302|6304|6308|6324|6336|6406|6475|6492|6494|6516|6522|6526|6530|6536|6557|6572|6584|6590|6595|6609|6210|6216|6322|6327|6373|6380|6593|6619

동물들이 혹한의 추위에도 견딜 수 있는 이유는? 

: 펭귄이 물에 젖어도 얼어붙지 않는 비밀이 밝혀지다. 

(How Animals Keep Warm in Freezing Wetness)


     사람이 외투와 신발 없이 눈길을 걸어간다면, 얼마나 춥겠는가? 그러나 산토끼, 다람쥐, 새들은 완벽하게 편안해 보인다. 그 비밀은 무엇일까?

비밀은 털과 깃털에 공기를 가두고, 물을 털어낼 수 있는 재료를 사용하고 있기 때문이다.Science Daily(2015. 11. 23) 지의 기사는 털(hair)과 깃털(feathers) 내에 갇혀진 공기가 어떻게 이상적인 절연체(insulator)로 작동되고 있는지를 설명해주고 있었다. MIT의 과학자들은 그들 외피의 덮개 작용이 사람이 만든 제품보다 얼마나 효율적으로 작동되고 있는지, 그 이유를 살펴보고 있었다.

털의 특성(털의 길이와 간격 같은)이 표면의 젖음에 미치는 영향을 조사하기 위해서, 연구자들은 털 길이, 털 간격, 유체 점도, 뛰어듦 속도 등을 포함하여 여러 변수들에 대해 실험했다. 그리고 털 표면의 기하학이 중요한 역할을 하는 것을 발견했다. 특별히 털 배열의 치밀도가 높을수록 표면의 방수 효과가 컸다.

또한 연구팀은 란다우-레비치 코팅(Landau-Levich coating)으로 불려지는 고전적인 침지법(dip coating) 보다 털 구조가 훨씬 많은 양의 공기를 가두는 것을 발견했다. 그렇게 함으로, 침지법의 증강된 버전을 만들고 있었다. 그러나 고전적인 란다우-레비치 코팅과 같지 않게 수생 동물 털과 관련된 질서 정연한 균형은 점도 스트레스와 물의 정수압 사이에 있었다. ”이러한 발견은 코팅기술의 발전에 잠재적인 기술을 제공할 것으로 희망한다”고 나스토(Nasto)는 말했다. 

깃털도 역시 극도로 잘 작동되고 있었다. 한 극도의 사례가 펭귄(penguins)이다. Science Daily(2015. 11. 23) 지에 게재된, ”펭귄의 동결 방지(anti-icing) 기술”이라는 또 다른 기사는 물에 저항하고, 공기를 가두는, 펭귄깃털의 여러 요소들을 기술하고 있었다.

남극의 펭귄은 –40℃에 이르는 온도와 초속 40m의 강풍이 부는 매우 혹독한 환경에서 살아간다. 펭귄들은 그렇게 추운 곳에서 차가운 물속과 밖을 드나들고 있지만, 그들의 깃털은 물에 젖어 얼어붙지 않는다.

이제 연구자들은 펭귄의 깃털을 자세히 조사했다. 그리고 펭귄의 동결 방지 기술을 알게 되었다. 그것은 나노구조(nanostructures)와 특별한 오일의 조합으로, 남극펭귄의 깃털에 슈퍼소수성(superhydrophobic)의 울트라 방수기능을 만들어낸다. 깃털 위의 물방울들은 구슬 모양이 되서, 얼어붙기 전에 굴러 떨어진다.

그것은 정말 멋지다. 그리고 펭귄을 따뜻하게 해준다. 또한 그 깃털은 웨델 바다표범(Weddell seals)에서도 작동되고 있음에 틀림없다. 왜냐하면 그들은 마치 따뜻한 바하마에서 수영하고 있는 것처럼. 펭귄들이 살아가고 있는 혹독한 곳에서 같이 수영하며 살아가고 있기 때문이다.

말할 필요도 없이, UCLA의 과학자들은 이러한 기술을 배우고 싶어 한다. 심지어 비행기에서 얼음을 제거하는 기술에도 적용될 수 있을까?

펭귄의 결빙방지 해결책은 얼음에 관한 몇몇 문제를 해결하는데 도움을 줄 수 있다. 예를 들어, 비행기의 날개와 방향타 위에 쌓여진 얼음 등은 비행기의 항공 역학적 특성을 변경시킬 수 있으며, 심지어는 충돌의 원인이 될 수도 있다. 항공사들은 추운 겨울 동안에 비행기 위의 얼음을 화학적으로 제거하기 위하여 많은 시간과 돈을 쓰고 있다. 펭귄에서 영감을 얻은 초소수성 표면은 매우 값이 싸며, 지속적이며, 또한 환경 친화적이다.

”날 수 없는 새가 날아다니는 비행기의 안정성에 도움을 줄 수 있다는 것은 약간의 아이러니이다”라고 카베포어(Kavehpour)는 말했다.

이 동물들에게 이러한 기술은 어떻게 생겨났는가? 이들 새들과 동물들은 지구 환경의 모든 곳에서 견뎌낼 수 있다. 예를 들어, 일러스트라의 필름 ‘비행(Flight)’에서 보여준 것처럼, 극제비갈매기(arctic terns)는 많은 온도 차이가 나는 지구의 여러 곳을 비행한다. 더군다나 그들은 모든 위도에서 물속으로 뛰어들어 그들의 먹이를 잡는다. 코요테는 더운 사막에서부터 추운 옐로우스톤의 겨울 눈 속에서도 살아간다. 각 동물들이 이러한 광범위한 서식지에서 살아갈 수 있다는 것은 정말로 놀라운 일이다. 



이것에 대해 생각해보라. 그러한 놀라운 일이 일어나기 위해서는, 재료물질이 만들어지는 것뿐만 아니라, 많은 지적설계가 필요함이 분명하다. 털과 깃털이 적절히 작동되기 위해서는, 정확한 길이, 치밀도, 오일 등이 필요하다. 그들은 적절하게 층을 이루고 있어야만 한다. 그들은 가장 취약한 부분들은 덮고 있어야만 한다. 그리고 동물이 불편하지 않게 움직일 수 있도록 해주어야 한다. 그리고 그러한 기술이 다음 세대에도 생겨날 수 있도록 DNA 속에 암호로 들어가 있어야한다. 이러한 것들은 어떤 체계적 지적설계의 증거임이 분명하다. 방향도 없고, 목적도 없는, 무작위적인 돌연변이들에 의한 자연선택으로는 설명될 수 없다. 물론 살아있는 동식물들은 모든 면에서 뛰어난 지적설계를 보여주고 있다. 그것이 오늘날 생체모방공학(biomimetics)이 각광받고 있는 이유이다.


하나님은 사람에게 털과 깃털을 주시지 않았다. 그러나 사람에게는 그것을 이해할 수 있는 뇌를 주셨다. 최초의 사람들은 동물의 가죽을 빌려서 옷으로 입었다. 그리고 그것이 의복이 될 수 있는 우수한 재료라는 것을 이해했다. 그것이 사람들이 북극, 남극, 사막, 춥고, 열악한 모든 곳에서 살아갈 수 있는 이유이다. 대부분의 온화한 환경에서 사람의 피부는 방수 기능과 증발에 의한 냉각 기능을 가지고 있다. 그래서 우리는 감사해야할 놀라운 피부를 가지고 있는 것이다. 우리는 동물들로부터 많은 것을 배운다. 사람이 만든 인공재료보다, 지속적이며, 환경 친화적이고, 기능적으로 우수한, 수많은 재료들과 설계들이 생물계에 널려있는 것이다.



번역 - 미디어위원회

링크 - http://crev.info/2015/11/how-animals-keep-warm/ 

출처 - CEH, 2015. 11. 25.

구분 - 4

옛 주소 - http://www.kacr.or.kr/library/itemview.asp?no=6291

참고 : 5296|5665|6183|5362|5564|4779|4764|4856|5814|3950|5596|6162|5997|3961|5920|5438|5894|6199|5960|5932|5926|5856|5694|5671|5656|5600|5567|5551|5504|5430|5426|5352|5351|5142|5088

곤충의 경이로운 능력들. 

(Insects Worth Respecting)


      여섯 개의 다리를 가진 생물들의 대부분은 작아서 거의 주목받지 못한다. 그러나 곤충학자들은 몇몇 곤충들에서 매우 특별한 놀라운 특성을 발견하고 있다.


브라질 말벌(wasp)의 독은 암세포를 죽인다(Science Daily. 2015. 9. 1) : 말벌로 암을 치료할 수 있을까?  완전히 새로운 종류의 항암제가 말벌의 독으로부터 얻어질 수 있다는 것이다.


곤충 어미는 알의 색깔을 조정한다(Current Biology 2015. 8. 31) : 이 논문은 '진화 생태학' 부류에 속해 있었지만, 멋진 지적설계에 관한 소식처럼 들린다 : ”Current Biology 지에 게재된 논문에서 아브람(Abram et al.) 등은 곤충 알의 착색은 유해한 자외선(UV)으로부터 배아를 보호하기 위해 적응한 것처럼 보일뿐만 아니라, 어미는 알이 놓여지는 장소에 따라, 그리고 자외선의 노출 위험에 따라, 선택적으로 알의 겉모습을 조절할 수 있다는 것을 보여주었다.” 저자인 마틴 스티븐스(Martin Stevens)는 그러한 특성을 진화로 설명하고 있었다.


나비의 날개를 모방한 가스 탐지기(PhysOrg. 2015. 9. 1) : 일러스트라(Illustra)의 DVD, ‘변태(Metamorphosis)’의 표지에 있는 사진과 같이, 아름다운 몰포 나비(Morpho butterfly)는 생체모방공학(biomimetics)에 관한 뉴스들 중에 톱을 장식하고 있었다. ”열대의 아름다운 빛깔을 가진 파란 나비의 날개에서 발견된 독특한 특성은, 고도로 선택적인 가스탐지 센서(gas detection sensors)의 개발에 열쇠를 쥐고 있을 수 있다” 라고 기사가 시작되고 있었다. 어떻게 그럴 수 있을까?

몰포 나비 날개의 인분(scales)에 있는 작은 나무와 같은 극미세 나노구조(nanostructures)들은 나비의 화려한 무지개 빛깔을 만들어내는 것으로 알려져 있다. 이전 연구는 수증기 분자들이 인분 내의 국소적 화학에 기인하여, 바닥보다 이들 구조의 꼭대기에서 다르게 부착하는 것을 보여주었다. 수증기 분자에 대한 이러한 선택적 반응은 생물-영감된 가스탐지기의 핵심이다.

피트(Pete Vikucic, U of Exeter) 교수는 ”새로운 기술의 실현을 이끄는 생물-영감된 접근 방식은 대단히 가치가 있다”고 말했다.


나침반 유도 비행을 하는 야행성 곤충들은 또한 난류를 탐지한다.(Science Daily. 2015. 8. 31) : 거센 바람 속에서 이동하는 나방(moth)은 위험한 상태인 것처럼 보인다. 그러나 Science Daily 지의 기사에 의하면, 나방들은 돌풍의 방향을 추적함으로써 그것에 대비할 수 있다는 것이다. '난류에 관한 신호(turbulence cues)'는 코스를 유지하기 위해서, 자신의 '내부 나침반(internal compass)'에 추가되어 장착되어 있는 것으로 보인다는 것이다.


흰개미 탑은 숨을 쉰다(Science Magazine. 2015. 8. 28) : PNAS 지에 게재된 한 논문에서 ”흰개미 탑(termite mounds)은 환기를 위하여 낮 동안 온도 변동(diurnal temperature oscillations)을 이용한다”는 것이다. AAAS 기자는 집단행동에 의해서 만들어진 이 영리한 에어컨 시스템에 대한 좋은 요약을 제공하고 있었다 :

그것이 작동되는 방법은 이렇다. 흰개미 탑의 가운데에는 한 커다란 중심 굴뚝(central chimney)이 있는데, 이것은 얇은 플루트(flute)같은 부벽(buttresses)들이 있는 도관 시스템과 연결되어 있다. 낮 동안에, 얇은 부벽 내의 공기는 절연된 중심 굴뚝 내의 공기보다 더 빠르게 따뜻해진다. 그 결과 따뜻한 공기는 상승하고, 더 시원한 굴뚝 공기는 가라앉는다. 그래서 공기의 순환이 바람에 의한 외부 압력으로 일어나는 것이 아니라, 닫힌 실내의 대류(convection)에 의해서 일어난다. 그러나 밤 동안에 부벽에 있는 공기는 빠르게 냉각되어, 중심 굴뚝 안의 온도보다 더 내려가, 환기 시스템은 역전된다. 공기 흐름의 역전은 흰개미들의 대사 과정의 결과물인, 낮 동안에 땅속 개미굴 속에 축적됐던 이산화탄소를 몰아낸다. 연구자들은 이번 주 PNAS 온라인 지에 그 연구 결과를 보고했다.


개미 통신: 안테나의 비밀(Science Daily. 2015. 8. 28) : 개미가 당신의 부엌에 침입한 경우, 스프레이를 뿌리기 전에, 자세히 살펴보라. 개미들이 만날 때, 그들의 더듬이를 어떻게 터치하는 지를 보라. 그들이 의사소통을 하는 것이 무엇인가? 그들은 '복잡한 사회 통신' 시스템 내에 페로몬 (pheromones)과 같은 화학 냄새를 공유하고 있다. 하지만 그들이 어떤 정보를 통신하고 있는지는 연구 중에 있다. 고베 대학의 연구자들은 더듬이에서 발현되고 있는 후각 유전자를 확인했다.


개미의 고도 후각은 인간이 맡을 수 없는 냄새를 맡는다(Live Science. 2015. 8. 13) : 작은 개미들이 낮은 휘발성의 탄화수소와 같은, 인간이 냄새 맡을 수 없는 물질들을 냄새 맡을 수 있다는 것은 불공평해 보인다. 사람의 후각은 훈련될 수 있지만, ”사람의 코는 개미 더듬이의 기준에는 도달하지 못한다”고 기사는 보도하고 있었다. ”사실, 대부분의 동물들은 연구에서 조사한 탄화수소의 냄새로서 감지할 수 없을 것이다.” 리버사이드 대학의 전문가는 말한다. 이러한 화학적 단서는 개미들 집락에서 여왕개미, 병정개미, 일개미, 다른 개미들 사이의 차이를 있게 해주고 있다. 그 화학물질은 고도의 휘발성(기화)이 아니기 때문에, 개미들은 많은 냄새들에 의해서 혼란 받지 않고, 각각의 이웃을 식별할 수 있다.

----------------------------------------------


곤충들이 갖고 있는 이러한 경이로운 능력들은 어떻게 생겨난 것일까? 진화론자들의 주장처럼, 무작위적인 자연적 과정으로 생겨났을까? 그리고 그러한 경이로운 능력들을 다음 세대로 전해줄 DNA 유전정보는 어떻게 생겨났는가? 당신이 눈에 보이는 곤충을 발로 밟기 전에, 그 곤충을 이해해보려고 노력해 보라. 어떤 문제를 해결할 수 있는 현명한 아이디어를 얻을 수 있고, 많은 돈을 벌수도 있을 것이다.



번역 - 미디어위원회

링크 - http://crev.info/2015/09/insects-worth-respecting/

출처 - CEH, 2015. 9. 12.

구분 - 4

옛 주소 - http://www.kacr.or.kr/library/itemview.asp?no=6290

참고 : 6245|5128|5960|2077|5752|5814|5959|4151|4737|5359|4274|6178|6129|4776|4396|4679|3313|3828|6159|4836|6161|5608|5488|4678|4482|3942|698|3890|3005

Brian Thomas
2015-11-19

용각류 공룡 목의 경늑골에서 보여지는 놀라운 설계 

(Amazing Sauropod Neck Design in 'Cervical Ribs')


      누군가가 '늑골(ribs)'를 말할 때, 사람들은 즉각적으로 장기를 보호하는, 가슴 주위를 싸고 있는 뼈를 생각할 것이다. 그러나 경늑골(cervical ribs)은 다르다. 특히 긴 목을 가졌던 공룡들의 경늑골은 완전히 달랐다. 어떤 용각류(sauropods)에서 경늑골은 목 전체를 따라 길게 달리고 있다. 각 늑골은 경추에 부착되어 있고, 각 늑골은 세 척추의 전체 길이에 걸쳐 확장되어 있다. 이 경늑골들도 우연한 돌연변이들에 의해서 생겨났을까? 아니면 어떤 중요한 기능이 있어서 의도적으로 창조됐던 것일까?  

마이클 하비브(Michael Habib) 박사는 한 흥미로운 작업을 수행했다. 그는 로스앤젤레스 카운티의 자연사박물관(Natural History Museum)에 있는 화석 동물의 실행과 동작을 재구축하고 있었다.[1] 하비브는 척추고생물학회의 75차 회의에서, 용각류 경늑골의 분석으로부터 몇 가지 놀라운 설계적 특성을 발표했다.[2]


첫째, 경늑골의 재료는 아마도 단단한 뼈가 아니었다. 하비브 박사는 그가 발굴했던 경늑골은 휘어져 있었고, 그 아래 척추의 모양과 일치되어 있었다고 말했다. 이상하게도, 이 용각류 표본은 배를 위쪽으로 향한 채 묻혀있었다. 경늑골은 아마도 골화된(부분적으로 생광물화 된) 힘줄(ossified tendons)로 만들어졌을 수 있다. 경늑골은 단단한 다리뼈에 비해 더 많은 연골과 적은 무기질을 가졌음을 의미한다.


더 많은 연골은 더 많은 유연성을 의미한다. 용각류가 자신의 긴 목을 위아래로 또는 옆으로 구부리는 것을 상상해보라. 유연성이 없다면, 그 가늘고 긴 경늑골은 부러져버릴 것이다. 골화된 힘줄은 일반적으로 뼈보다 훨씬 쉽게 구부러질 수 있다.


하비브는 다양한 변형력(deflection forces)에 대한 모델링에서, 비행기 날개와 같이 단지 한 말단부에 고정된 긴 구조물은 구조물의 전체 길이에 의존하는 특정 주파수에 요동하는 경향이 있음을 검토하였다. 다양한 길이의 피아노 줄이 다른 소리를 내는 것을 생각해보라. 예를 들어, 브라키오사우루스가 나뭇잎을 먹기 위해 나무 가지를 향해 한 걸음을 내딛었을 때, 머리의 갑작스런 비틀림과 흔들림으로부터 목을 유지시켜주는 것은 무엇일까?


한 가지 해결책은 각 척추 뼈들 사이에 그러한 성가신 흔들림을 상쇄할 수 있는 복잡한 배열의 근육들을 갖는 것일 수 있다. 그러나 근육에 힘을 쓰고 조절하는 일에는 많은 에너지가 소모된다. 대신에 어떤 용각류는 그러한 노력 없이 흔들림을 둔화시키는 경늑골에 의존하고 있었다고, 하비브는 말했다.   


하비브는 경늑골을 리프스프링(leaf springs)에 비유했다. 이것은 활과 화살에서 활과 같은 구조로, 용각류의 목을 따라 일어날 수 있는 뒤틀림을 수동적이며 효율적으로 조절해주는 구조라는 것이다. 그는 경늑골은 전체 목의 진동 패턴과 역상으로 위치함으로써 수동적 에너지 분산 밴드(리프스프링)로서 역할을 하고 있었다고, 청중들에게 말했다. 다른 말로 해서, 브라키오사우루스(brachiosaur)의 경늑골은 작은 머리를 충분히 안정적인 상태로 위치시킬 수 있게 해주면서, 원하는 나뭇잎을 먹을 수 있도록, 전체 목의 흔들리는 에너지를 흡수하고 있었던 것이다. 이 놀라운 설계적 특성은 창조주의 천재적 독창성을 보여주고 있는 것이다. 성경은 ”나 여호와가 하늘과 땅과 바다와 그 가운데 모든 것을 만들고 일곱째 날에 쉬었음이라”고 말씀하고 있다.(출 20:11). 분명 용각류 공룡의 경늑골은 멸종되어버린 공룡을 보호하시고 설계하셨던, 창조주 하나님의 놀라운 지혜를 엿볼 수 있게 하는 것이다.



References
1. Research Associates. Fact Sheet, Natural History Museum, Los Angeles County. Posted on nhm.org, accessed October 22, 2015.
2. Habib, M., and L. Chiappe. Elastic titans: Functional analysis of sauropod necks reveals potential for elastic dampening and a novel blood flow assistance mechanism. Technical Session XVII, October 17, 2015, 1:45pm. Dallas, TX: 75th annual meeting of the Society of Vertebrate Paleontology.



번역 - 미디어위원회

링크 - http://www.icr.org/article/8996

출처 - ICR News, 2015. 11. 5.

구분 - 4

옛 주소 - http://www.kacr.or.kr/library/itemview.asp?no=6272

참고 : 6115|4590|2812|4803|4362|6184|4456|5856|5920|6160|5317|5113|4762|4356|6236|5774|5772|5665

Brian Thomas
2015-10-14

말벌의 독이 항암제? 

(Cancer Medicine in Wasp Toxin?)


     말벌(wasp)의 독에 들어있는 짧은 단백질 또는 펩티드(peptide)는 완전히 새로운 방법으로 사람의 암을 치료하는 항암제가 될 수 있다는 것이다. 연구자들은 브라질 Polybia paulista 말벌의 독에서 특정 펩티드를 분리하고, 그것이 정상세포에는 해를 입히지 않으면서, 어떻게 암세포를 찾아 파괴하는 지를 연구했다. 그들은 이 펩티드가 세포를 파괴하는 무기가 될 수 있도록 하는 흥미로운 내용을 발견했다.


분자 스케일로 MP1 펩티드는 작은 코르크 마개뽑이(corkscrew)처럼 보인다. 그것의 한 쪽 측면은 세포를 둘러싸고 있는 지질의 세포막과 화학적으로 맞물린다. 그리고 다른 쪽 측면은 물(water)을 끌어당기도록 화학적 전하를 갖는다.


Biophysical Journal에 게재된 그 연구는 이들 두 측면을 가지는 나선형 펩티드들 여러 개가 큰 분자 고리(ring)를 형성하며 어떻게 나란히 착륙하는지를 보여주었다. 시뮬레이션에서 그것들은 암세포에 거대한 구멍을 만들었다.[1] 구멍은 매우 커서 세포 내용물은 밖으로 쏟아져 나오고, 암세포는 간단히 죽었다. 이들 펩티드들이 신체의 정상세포들을 공격하지 않는다면, 우리 몸에서 암세포를 죽이는 데에 사용될 수 있을 것이다.


이러한 가능성에 대한 연구는 아직 초기 단계이다. 리즈 대학(University of Leeds)의 공동 수석 연구자는 Cell Press 뉴스 보도에서 말했다. "실험실에서 이 펩티드는 암세포를 선택적으로 파괴하면서도 정상세포에는 무독성임을 보여줬기 때문에, 안전성은 확보할 수 있을 것으로 보인다. 그러나 그것을 입증하는 데에는 추가적 연구가 필요하다"고 말했다.[2]


암세포는 그들의 세포막에 묻혀있는 두 개의 독특한 화학물질을 가지고 있다고 그 연구 저자들은 썼다. 이들 두 화학물질이 함께 존재할 때, MP1 펩티드는 단지 화학물질 하나가 그곳에 있을(정상세포의 경우처럼) 때보다 20배 이상 큰 구멍을 만드는 것을 그들은 발견했다. 암세포처럼 박테리아 세포도 두 개의 화학물질을 가지고 있다. 이전 연구는 MP1가 항생제로서, 그리고 방광 암세포를 공격하는 물질로서 효과가 있음을 보여줬었다. 


현대의 많은 의약품들은 자연에 있는 하나님이 창조하신 화학물질들로부터 얻어진 것이다. 여기에는 아스피린, 보톡스, 곰팡이가 만드는 페니실린, 약용식물들, 다양한 용도로 사용되는 여러 창조물들이 포함된다. 보시기에 심히 좋았던 창조의 모습들은 사라지고[3], 오늘날 브라질 말벌은 침략자로부터 그들의 집을 보호하기 위해서 다른 독과 함께 MP1을 사용한다. 그러나 MP1은 미래에 언젠가는 사람의 암을 치료하는 유용한 항암제가 될 수도 있을 것이다. 그렇다면, 그 혜택을 받는 사람들은 암과 싸울 수 있도록 그러한 물질을 만들어놓으신 창조주에게 감사해야 할 것이다.



References

1.Leite, N.B. et al. 2015. PE and PS Lipids Synergistically Enhance Membrane Poration by a Peptide with Anticancer Properties. Biophysical Journal. 109 (5): 936-947.
2.Brazilian wasp venom kills cancer cells by opening them up. Cell Press news release via EurekAlert! Posted on eurekalert.org September 1, 2015, accessed September 21, 2015.
3.Genesis 1:31


*관련기사 : '뱀·벌 독으로 암 죽인다' '독 속의 약' 치료 개발 활발 (2015. 9. 16. MBC News)
http://imnews.imbc.com/replay/2015/nwdesk/article/3772281_14775.html



번역 - 미디어위원회

링크 - http://www.icr.org/article/8977

출처 - ICR News, 2015. 10. 6.

구분 - 3

옛 주소 - http://www.kacr.or.kr/library/itemview.asp?no=6245

참고 : 4618|4677|2365|2998|2996|4351|4927

생체모방공학의 새로운 뉴스들. 

(What’s New in Biomimetics?)


      자연의 설계로부터 영감을 얻은 수많은 과학적 발전은 따라잡기 어려울 정도이다.

등반 로봇(climbing bot) : 도마뱀붙이(geckos)에서 영감을 얻은 로봇은 자기보다 100배 더 무거운 짐을 나를 수 있다고 New Scientist지는 보도하고 있었다.


세포 펌프 광스위치(Cell pump light switch) : 세포막의 나트륨 펌프(sodium pump)를 조절함으로서, 단백질 기반의 광스위치가 가능하게 되었다고 PhysOrg 지는 말했다. 이것은 빛에 민감한 단백질 스위치로서, '광유전학(optogenetics)‘의 새로운 분야이다.


해바라기 분자 가위 : 해바라기 씨앗(sunflower seeds)에서 발견된 한 단백질은 분자(molecules)들을 자르거나 수선할 수 있다는 것이다. PhysOrg 지는 이 분자기계의 사용은 새로운 신약개발에 도움을 줄 수 있을 것이라고 말했다.


신경 컴퓨터(neural computers) : 기억하는 저항기 '멤리스트(memristors, 새로운 유형의 기억 소자. memory+resistor)‘의 사용으로, 컴퓨터 과학자들은 뇌의 신경 네트워크를 모방한 컴퓨터의 설계가 가능케 되었다고 Nature News는 말했다.


안티 스팸 기술 : 스팸 메일을 걸러낼 수 있는 더 좋은 장치가 필요한가? 프로그래머들이여 개미(ant)를 자세히 살펴보라. PhysOrg 지는 개미의 '분배 결정 네트워크(distributed decision network)”를 사용하는 것은 안티-스팸(anti-spam) 기술에 영감을 줄 수 있다고 말했다.


교통체증 해결하기 : 왜 개미들은 그들의 이동 경로에서 교통체증을 만들지 않는가? 교통공학자들은 개미의 방법을 따름으로 교통 혼잡을 완화시킬 수 있다고 Science Magazine은 말했다. 조금 엉뚱해 보이지만, ”개미들은 혼잡하게 되면 브레이크 대신에 가스를 방출한다. 이것은 그들의 밀도가 두 배가 되어도 약 25%까지 속도를 올릴 수 있다”는 것이다. 과학자들이 그 문제를 밝혀낼 때까지 도로에서 시도하지는 말라.


합성 나노 공장들(synthetic nanofactories) : ‘미래는 합성생물학의 시대’라고 Live Science지는 말했다. ‘Ginkgo Bioworks’는 ”자연에서 교훈을 얻은 점증하는 공학기술 회사 중 하나”로서, 자연에서 영감을 받은 분자 스케일로의 공장을 세우려는 것이다. ”설립자들은 차세대를 위해 산업공학을 재설계하고 있는 중으로, 생물학에서 동력을 얻는 일종의 제조혁명이다”라고 그 기사는 말했다.


대기 중에서 물 모으기 : 잎에 잔털을 가지고 있는 토마토와 다른 식물들은 대기 중에서 이슬비를 모으는 고무적인 방법을 가지고 있었는데, 이것의 모방은 전 지구적인 물 부족 현상을 완화시켜줄 수도 있다고, Science Daily 지는 보도하고 있었다.


물고기 갑옷 : 물고기 비늘(fish scales)의 설계를 모방하여 갑옷(armor)을 만들기 위한 노력들이 PhysOrg 지에 보도되고 있었다. ”이 소재에 숨겨져 있는 비밀은 위쪽은 부드럽고, 조직의 아래는 휘기 쉬운, 단단한 비늘의 결합 방법과 디자인에 있다”며, 엘라스모이드 물고기(elasmoid fish)의 비늘로부터 영감을 받은 한 생체모방 공학자는 말했다.


물고기 잠수함(fish submarines) : 잠수함 설계자들은 잠수함 설계의 혁신을 위해 멸종된 폐어(lungfish)를 찾고 있다고 PhysOrg 지는 보도했다. 그들은 이것을 '고생물 모방공학(palebiomimicry)”이라 불렀다. 그들은 수중음파탐지기(sonar)에서 사용된, 물고기의 측선(lateral line)에 있는 털세포(hair cells)가 얼마나 민감한 지를 연구하고 있었는데, 이것은 추락된 비행기 MH370과 같은 물체의 위치를 효과적으로 찾을 수 있는, 잠수함 개발 설계에 도움을 줄 수 있을 것이라고 말했다.


막 채널 : 로렌스 리버모어 국립연구소(Lawrence Livermore Lab)는 세포들이 단백질과 결합하는 방식의 탄소 나노튜브(carbon nanotubes)를 지닌, 스스로 조립되는 '생체모방적 나노기공의 막 채널(nanoporous membrane channels)”을 구축하는 방법을 발견했다고 PhysOrg 지는 보도하고 있었다.


윈윈(win-win) 광합성 : 인공 광합성(artificial photosynthesis)의 발전이 계속되고 있다.Science Daily지는 광포획 나노선 정렬(light-capturing nanowire arrays)과 살아있는 박테리아를 이용하여 햇빛을 수집하는 데에 중요한 획기적인 발전을 보도했다. 만약 그것이 이루어진다면, 사람과 환경 모두에게 혜택이 돌아갈 것이다.


갑오징어의 위장술 : 네브라스카 린콜른 대학(Nebraska-Lincoln university)의 연구자들은 ”위장술의 달인”인 갑오징어(cuttlefish)를 모방하는 데에 발전을 하고 있는데, 갑오징어는 거의 순간적으로 색을 변화시킬 수 있다. ”이것은 비교적 새로운 연구 분야”라고 리탄(Li Tan)은 PhysOrg 지에서 말했다. 그는 최근 논문의 공저자로서, 연구팀의 설계에 대해 간략하게 기술하고 있었다. ”연구자들은 대부분 갑오징어에서 영감을 받고 있었는데, 갑오징어는 피부의 색과 질감(texture)을 변화시킨다”. 질감의 변화는 색깔의 변화보다 훨씬 더 어려운데, 그들은 그것을 발견하고 있었다.


곤충을 모방한 청각 보조장치 : ”곤충에서 영감을 얻은 새로운 마이크로폰은 주거지의 소음 문제와 배경소음을 제거할 수 있는, 오늘날 청각 보조장치의 혁명을 가져올 것”이라고 Science Daily 지는 보도했다.


백단나무(sandalwood)의 노란색 색소 : 백단나무(Sandalwood)는 붉은 색소로 잘 알려져 있지만, 노란색의 색소가 훨씬 더 복잡하다. PhysOrg 지는 ”노란색 색소에 대한 생체모방적 접근” 방법이 적색의 백단나무에서 발견됐다고 보도했다. 이 색소의 복잡한 생산과정을 모방하는 것은 용도가 많은 인기 있는 색을 만들 수 있는 손쉬운 방법이 될 것이다.


주의해야할 점 : 자연을 모방하는 모든 것은 정말 멋진 일이지만, 안전성을 고려해야만 한다. 하버드 대학의 ‘생물영감 설계를 위한 위스 연구소(Wyss Institute for Biologically Inspired Design)'는 합성박테리아와 같은 위험성이 있는 실험을 수행할 때, 앞서 대처해야 하는 몇 가지 안전 수칙을 내놓았다.



놀라운 연구보고들이 생체모방공학 분야에서 계속되고 있다. 자연의 경이로운 설계를 모방하는 인류의 풍요로움을 더해줄 것이다. 과학자들도 모방하려고 하는 경이로운 공학적 기술들이 지성도 없고, 방향도 없고, 목적도 없는, 무작위적인 복제 오류들에 의해서, 모두, 우연히, 어쩌다 생겨날 수 있었을까? 이것들은 지적설계를 가리키고 있는 것이다.


*참조 ; Biomimetics Still Trending Up (CEH, 2015. 3. 28)
http://crev.info/2015/03/biomimetics-still-trending-up/



번역 - 문흥규

링크 - http://crev.info/2015/05/whats-new-in-biomimetics/ 

출처 - CEH, 2015. 5. 9.

구분 - 4

옛 주소 - http://www.kacr.or.kr/library/itemview.asp?no=6199

참고 : 5960|5932|5926|5894|5856|5671|5656|5600|5596|5567|5551|5504|5430|5352|5351|5287|5088

초파리는 내부 나침반을 가지고 있었다. 

그리고 언제나 반복되는 수렴진화 이야기! 

(The Fly, Invertebrate Designs)


       Nature (2015. 5. 14) 지에 보고된 한 논문에 의하면, 파리(flies)들은 주변 환경에 대한 지도(map)를 구축하기 위해서 ‘내부 나침반(internal compass)’을 사용하고 있다는 것이다. 초파리(fruit flies)는 매우 작은 생물체이다. 그들은 핀머리와 같은 작은 머리에 놀랍게도 나침반을 가지고 있었던 것이다. '가상현실 아레나(virtual reality arena)' 안으로 초파리들을 위치시키고 수행된 실험은 초파리들이 가상공간을 탐사할 때, 그들의 머리를 정렬시키는 것을 보여주었다. 그들의 제어는 작은 머리에 있는 뉴런으로 거슬러 올라간다. ”중앙의 복잡한 뉴런은 고도로 제어된 반응을 보여주었는데, 아레나로부터의 시각적 단서에 대한 파리의 상대적 방향성을 조절하고 있었다.” 연구자들은 이러한 내부 나침반이 어떻게 생겨났을 것인지에 대해서, 어떠한 증거도 없음에도 불구하고, 다시 한번 수렴진화(독립적으로 우연히 여러 번)에 호소하고 있었다.    

고리형 끌개 네트워크(ring-like attractor networks)가 진화적으로 수렴됐을 가능성은 유사한 내부 연산 원리가 다른 종에서 방향성을 계산하는 데 사용되고 있을 수 있다는 흥미로운 전망을 하게 한다.

이전 글(5/19/15)에서 언급했던 것같이, 초파리와 사람은 또 다른 '수렴성'을 공유하고 있었다. Current Biology(2015. 5. 18) 지는 말했다 : ”최근의 한 연구에 의하면, 초파리(Drosophila melanogaster)의 뇌 연결부는 정보 처리를 용이하게 해주는 초소형의 모듈과 풍부한 클럽 조직(rich-club organisation)을 보여주고 있었다. 이러한 조직은 포유류의 뇌와 놀랄 만큼 유사한 것이다.”


Nature(2015. 5. 21) 지의 한 새로운 논문은, 초파리와 사람 사이의 또 다른 놀라운 유사성을 보고하고 있었다. ”함께, 이러한 결과는 사람에서 보여지는 ‘회귀 접합(recursive splicing)’이 초파리에 흔히 사용되고 있음을 가리킨다. 그리고 이것은 일부 대형 인트론(introns)이 제거되는 메커니즘에 대한 통찰력을 제공하고 있다.” 회귀 접합은 전사되는 유전자의 어떤 ‘래칫 포인트(ratchet points)’에 대한 분자기계들의 정확한 배치를 요구하는 다단계 공정이다. (ratchet - 역회전이 안 되도록 고안된 톱니바퀴). 초파리의 유전자에서 이들 래칫 포인트는 구조와 기능 면에서 진화적으로 보존되었다는 것이다.



철새, 비둘기, 연어, 송어, 거북, 박쥐, 소, 사슴, 여우, 제왕나비, 잠자리...심지어 박테리아 등 여러 생물들에서 생체 나침반이 발견되었거나, 자기장을 감지할 수 있는 것으로 보고되고 있다. 진화계통수 상에서 멀리 떨어져 있는 각각의 생물들에 그러한 기능들이 어떻게 진화될 수 있었을까? 독립적으로 여러 번(수렴진화) 진화되었는가? 자기장을 측정하고 방향을 알려주는 정교하고 복잡한 기관들과, 그것들을 후대로 전해주는 암호화된 유전정보들이 동시에 우연히 한 번 생겨났다는 사실도 믿기 어려운데, 여러 번 일어났을 것이라는 주장이 과학적인 주장일 수 있을까? 이것은 한 분의 설계자가 여러 생물들에 공통적으로 생체 나침반을 장착시켜 놓았을 가능성을 가리키는 것이다. 



번역 - 미디어위원회

링크 - http://crev.info/2015/05/invertebrate-designs/

출처 - CEH, 2015. 5. 21.

구분 - 4

옛 주소 - http://www.kacr.or.kr/library/itemview.asp?no=6165

참고 : 5439|3840|3267|4396|4873|4604|5000|5175|5459|4025|5902|3855|3413|3329|3318|5589|6023|5966|5743|6158|5710|5602|5591

깡충거미는 사람처럼 3색 시각을 갖고 있었다. 

(The Spider : Invertebrate Designs)


      무척추동물인 작은 거미들은 뛰어난 설계를 보여주고 있었다. 진화론자들은 그저 자신들의 머리를 긁적거리고 있을 뿐이었다.

Science Daily(2015. 5. 18) 지의 보도에 의하면, 깡충거미(jumping spiders)는 ”소형 컬러 시각의 대가(masters of miniature color vision)”라는 것이다. National Geographic지는 이렇게 보도하고 있었다 : ”놀라운 발견 : 깡충거미는 우리보다 더 많은 색들을 볼 수 있다.” 깡충거미의 눈은 사람의 눈에 비하면 매우 작다. 그러나 새로운 연구는 사람의 눈이 볼 수 있는 것처럼, 세 가지 색상 채널로 볼 수 있음을 보여주었다. Science Daily 지는 이러한 고도로 발달된 눈을 진화에 호소하고 있었다 :

연구자들이 발견한 ”스펙트럼형 필터링(spectral filtering)”은 이전에 어떤 거미에서도 기술된 적이 없었던 것이다. 이것은 시각적 전략에 대한 진화론적 수렴(수렴진화)의 놀라운 사례가 되고 있다.

Current Biology 지에 게재된 논문에서, 이 작은 거미에서 3색시(trichromatic vision)가 어떻게 수렴진화 되었는지, 또는 이러한 혁명이 어디에서 왔는지에 대해, 언급하지 않고 있다는 사실은 놀라운 일이 아니다 :

이것은 2색 시각에서 3색 시각으로의 변화는 Habronattus 깡충거미의 특유의 화려한 구애행동의 진화에 중요한 역할을 했을 수도 있음을 가리킨다. 미래의 연구는 망막 필터링에 의해 전달된 향상된 색깔 구별 능력이 Habronattus 속 거미들의 광범위한 방산과 성공을 가능하게 했던 핵심적 변혁이었는지를 조사해 보아야할 것이다.

즉, 고도로 발달된 시각은 진화로 출현되어 있음으로, 미래의 연구는 그것을 알아내야할 것이라는 것이다.

결론적으로, 우리의 연구는 일부 깡충거미과(salticidae) 거미들이 색깔을 볼 수 있는지에 대한 오랜 수수께끼에 대한 해결책을 제공하고 있다. 그리고 컬러 시각과 (생물들의 화려한) 채색의 상호 진화에 대한 미래 연구의 문을 열고 있다. 미래의 연구는 이 필터 기반의 3색시의 진화를 선호하게 했던 적응 이점뿐만 아니라, 분류학적 범위에도 초점을 맞추어야할 것이다. 특히, 우리는 붉은 색과 노란 색을 가진 (근접하지 않도록 경고하는) 경계색을 가진 먹이 생물들의 채집 시의 이점을 알아낼 수도 있음을 시사한다.


거미에 관한 또 다른 소식으로, 호주 사람들은 '거미 비(spider rain)'에 대한 소식으로 기겁하고 있었다.(NBC News, 쿠키뉴스 2015. 5. 18. 하늘에서 수백만 마리 거미가 내린다면?… ‘거미비’ 현상 화제). 그러나 그것은 실제로 거미들이 비로 내리는 것이 아니다. 지금은 거미들의 이동 계절이다. 많은 거미 종들은 작은 거미줄을 뽑아내어, 바람에 올라타고 먼 거리를 이동할 수 있다. ”이러한 일은 우리 주변에서 늘 있었습니다.” 한 곤충학자(거미 전문가)는 말했다. ”우리는 그것을 볼 수 없었을 뿐입니다.” National Geographic지는 눈처럼 거미줄로 뒤덮인 한 곳의 사진을 보여주고 있었다. (걱정하지 말라. 이것은 사람에 해롭지 않다. 그것은 늘 일어났던 장엄한 자연의 역사이다.) 그것은 일부 사람에게는 혐오스러운 것일 수 있다. 그 기사는 그 사건을 ”거미줄의 경이로움”을 논의하는데 사용하고 있었다.

거미줄은 ”거대한 진화의 획기적 돌파구였다”. 그는 말했다. ”그리고 이것은 거미들이 왜 성공적인 그룹인지를 말해주는 또 하나의 사례이다.”

거미들의 화려한 색상과 짝짓기를 위한 구애 행동을 보기 위해서는, Evolution News & Views(2015. 4. 23) 지에 게재된 공작거미(Peacock Spider)의 화려한 춤을 보라. 5mm 정도 크기의 작은 이 생물에 얼마나 많은 색깔과 기술이 들어있는지를 확인하라. 



늘 되풀이되고 있는 논쟁이지만, 진화론자들은 거미들의 이러한 경이로운 특성들이 목적이 없고, 방향이 없고, 지성이 없고, 지시되지 않은, 무작위적인 과정(돌연변이)으로, 우연히 생겨났다고 말한다. 그러나 창조론자들 이러한 경이로운 특성들은 지적설계된 것이라고 주장한다. 고도로 발달된 컬러 시각을 갖고 있는 생물이 하등한 생물일까? 당신은 어떤 주장이 더 합리적이라고 생각하는가?



*참조 : Bee vs. Jumping Spider (youtube 동영상)
https://www.youtube.com/watch?v=qxbuysNGLOM

Googly Eyed Jumping Spider (youtube 동영상)
https://www.youtube.com/watch?v=YJfp9pKI_Qc

Spiders Jump with Deadly Accuracy in Green Light (youtube 동영상)
https://www.youtube.com/watch?v=wiA4yVt1KMk

Eight-Eyed Horror: Peering Into Jumping Spiders' Explosive Brains (youtube 동영상)
https://www.youtube.com/watch?v=0Cx0si_XFXI

Peacock Spider (youtube 동영상)
https://www.youtube.com/watch?v=d_yYC5r8xMI



번역 - 미디어위원회

링크 - http://crev.info/2015/05/invertebrate-designs/ 

출처 - CEH, 2015. 5. 21.

구분 - 4

옛 주소 - http://www.kacr.or.kr/library/itemview.asp?no=6163

참고 : 5850|5327|5103|4856|5959|5839|5600|5390|5031|6122|4846|5068|4494|4772|2894|2944|1428|5962|5158|5827|5896|4643|4565|4528|2899|1816

개미는 고등수학과 물리학을 사용한다. 

: 그리고 개미의 시각은 포유류보다 우수할 수 있다. 

(Ants : Invertebrate Designs)


     Science Daily(2015. 5. 12) 지의 최근 기사에 의하면, ”개미(ants)의 이동에는 수학적 패턴이 숨겨져 있다”는 것이다. 개미들은 어떻게 수학을 배웠을까? 개미들은 먹이를 찾아 탐사를 진행할 때, 가우스 분포(Gaussian distributions)와 파레토 분포(Pareto distributions)로 알려진 ”통계적 확률분포에 적합한 수집된 경로”를 선택한다는 것이다. 놀랍게도, 척추동물과 관련이 없는 이 작은 생물들은 고등동물이 사용하는 것과 비슷한 전략을 ‘수렴진화’(우연히 두 번 진화)시켰다는 것이다.

과학자들은 집단적으로 이동하는 새들의 무리, 물고기 떼, 개미들의 일렬 이동, 그리고 다른 생물들의 복잡한 집단적 이동이 어떻게 그렇게 잘 조직화되어 일어나는지를 설명할 수 있는 메커니즘을 발견하고자 노력해왔다.

만약 그들이 그 메커니즘을 알아낼 수 있다면, 같은 메커니즘을 사용하기를 원하는 로봇 공학자들에 큰 도움이 될 수 있을 것이다. ”예를 들어, 오염된 지역을 청소하거나 어떤 임무를 수행하는 한 그룹의 소형 로봇 또는 마이크로 로봇들이 서로 협력하도록 설계하는 데에 사용될 수 있을 것이다”라고 한 연구자는 말했다.


또 다른 개미는 수학적 물리학을 이용한 뛰어난 기술을 보여주고 있었다. National Geographic(2015. 5. 13) 지는 번개처럼 빠르고 강력한 아래턱을 사용하여 (반작용을 이용하여) 모래함정을 벗어나는 올가미턱 개미(trap-jaw ant)의 비디오 영상을 보여주고 있었다.(아래 관련기사 참조). ”그것은 팝콘 같았다. 그들은 모든 곳으로 튀어나갈 수 있다.” 한 관찰자는 말했다.


여기에서 끝이 아니다. 개미의 또 다른 놀라운 능력이 발견되었다. PhysOrg(2015. 5. 20) 지는 보도하고 있었다 : ”개미의 색을 구별하는 시각은 사람과 구세계 영장류의 시각처럼 좋을 수도 있다. 개미의 시각은 개, 고양이, 왈라비와 같은 포유류의 시각보다는 훨씬 더 좋아 보인다.” 개미의 작은 눈과 뇌 안에는 고도 기술이 압축되어 들어있다. 개미로부터 초소형화를 배우기를 원하고 있는 로봇 설계자들에게는 너무도 좋은 소식이라고, 그 기사는 말한다.



개미에서 발견되고 있는 이러한 경이로운 능력들은 어떻게 생겨날 수 있었을까? 고등 수학도 우연히 생겨날 수 있는가? 시속 233km의 속도로 닫히는 개미의 턱이 무작위적인 돌연변이들로 우연히 어쩌다가 생겨났는가? 개미가 포유류의 시각을 능가하는 시각을 갖게 된 이유는 무엇 때문인가? 우연히? 어쩌다? 그리고 개미들이 이러한 경이로운 능력을 진화시키는 동안, 병정개미는 왜 1억 년 이상 동일한 모습인가? 개미들의 이러한 경이로운 능력들은 그들이 진화되었다기보다 창조되었음을 가리키는 것이다.



*관련기사 : 개미귀신 함정 가뿐히 탈출하는 ‘점프 개미’ (2015. 5. 19. 한겨레)
http://ecotopia.hani.co.kr/285464?_fr=mt0

시속 233km의 턱으로 점프하는 개미의 생존기술(동영상)  (2015. 5. 20. 허핑턴포스트)
http://www.huffingtonpost.kr/2015/05/20/story_n_7339142.html

총알처럼 빠르게 무는 올가미개미의 비밀 (2006. 10. 과학동아)
http://science.dongascience.com/articleviews/article-view?acIdx=6918&acCode=4&year=2015&month=05&page=1

Trap-jaw ants jump forward and backward (youtube)
https://www.youtube.com/watch?v=lOQgvlAakh4

Monster Bug Wars- Trap-Jaw vs. Ant Lion (youtube)
https://www.youtube.com/watch?v=8L_1teHLycw

사막 개미의 길찾기 비결…알고보니 ‘생체 나침반’
http://nownews.seoul.co.kr/news/newsView.php?id=20180501601005&wlog_tag3=naver



번역 - 미디어위원회

링크 - http://crev.info/2015/05/invertebrate-designs/

출처 - CEH, 2015. 5. 21.

구분 - 4

옛 주소 - http://www.kacr.or.kr/library/itemview.asp?no=6161

참고 : 5087|3005|5608|5488|4885|3942|3870|4678|4482|5960|4272|698

Brian Thomas
2015-05-26

수염고래에서 늘어나는 신경이 발견되었다. 

: 고래의 먹이 행동에 관여하는 기관들은 설계를 가리킨다. 

(Clever Construction in Rorqual Whales)


      몇 년 전에, 과학자들은 세계에서 가장 큰 생물인 수염고래과(rorqual whale)의 턱에 있는 독특한 한 감각기관을 발견했었다. 수염고래 과에는 흰긴수염고래(blue whale, 대왕고래)와  긴수염고래(fin whale, 참고래) 등이 포함되어 있는데, 그들은 입에 있는 접혀진 조직을 풍선처럼 부풀려 물을 여과하여 바다에 풍부한 크릴새우 등을 잡아먹고 살아간다. 최근에 일부 연구자들은 매우 현명한 지적설계를 가리키는, 독특한 신축성의 고무끈 같은 신경 구조에 대해서 기술하고 있었다.


2012년 Nature 지의 보고에서, 연구자들은 수염고래의 ‘돌진 먹기(lunge feeding)’ 메커니즘을 가능하게 해주는데 필요한 정교한 여러 몸체 구조들 목록 사이에서 한 감각기관을 기술했었다.[1] (아래 관련자료 링크 1번 참조). 거기에는 먹이를 여과할 수 있는 빗과 같은 강모(baleen)와, 부채처럼 펴지는 연골로 된 막대들이 있는 복부의 홈이 있는 지방층(ventral groove blubber), 새롭게 발견된 한 감각기관(sensory organ), 두개골과 헐겁게 연결되어 있는 분리되는 턱(split jaw), 그리고 먹이를 감지할 수 있는 턱을 따라 나있는 진모(vibrissae, 길고 뻣뻣한 털) 등이 포함된다. 고래의 감각기관은 아래턱이 그들의 입 안으로 많은 물을 취했을 때 견뎌내는 압력을 감지한다. 이 중요한 센서가 없다면, 고래의 턱은 찢어질 수도 있을 것이다.


북극과 남극의 바다는 수염고래들에게 최고의 먹이를 제공해주는 장소이다. 그러면 이들 거대한 바다 생물들은 어떻게 수백 갤런의 차가운 바닷물을 계속 걸러내면서도 얼어붙지 않는 것일까? 그것은 고래의 거대한 혀에 분포하는 혈관에 있는 역류열교환기(countercurrent heat exchangers)가 중심부 체온을 보호하고 있기 때문이다. 1997년에 Science 지에서 한 저자는 이 놀라운 디자인에 대해서 이렇게 기술하고 있었다. ”모든 수염고래들은 그들의 입에 역류열교환기를 가지고 있는데, 이것은 온혈동물인 고래가 차가운 바다에서 먹이 활동을 할 수 있도록 해준다.”[2]

그렇다면 이들 고래들의 입에는 어떤 신경이 존재하고 있는 것일까? 만약 그들이 일반적인 신경을 가지고 있다면, 고래들이 그들의 입을 풍선처럼 부풀리고 혀를 확장시켰을 때, 감각기관에서 압력 신호를 보내고 있는 신경들은 끊어져버릴 것이다.  


다행히도, 이러한 일은 발생하지 않는다. 그것은 마치 누군가가 고래의 섭식 특성을 잘 알고 있었던 것처럼, 이들 중요한 신경은 펴질 수 있고 탄력성 있는 조직 내에서 움츠러질 수 있는 덮개(sheath) 내에 들어있었다. 최근에 Current Biology 지에서는 이 새로운 신축성의 고무끈 같은 신경(bungee-cord-like nerves)에 대해서 보고되고 있었는데, 연구자들은 그것을 수염고래들의 ‘한 필수적인 구성요소(an essential component)’라고 부르고 있었다.[3]    


척추동물의 진화에 관한 세계 최고 전문가 중 하나인 마이클 벤톤(Michael J. Benton)은 왕립학회 회원이며, 브리스톨 대학에서 근무하고 있다. 그의 권위 있는 책 ‘척추 고생물학(Vertebrate Paleontology)’에서, 그는 고래의 기원에 대해서 이렇게 말했었다 : ”돌고래처럼 빠르게 수영하는, 30m 길이의 거대한 대왕고래(blue whale)를 보고 있노라면, 그들이 육지에서 살던 포유류 조상으로부터 어떻게 진화했을 지를 상상하는 것은 힘들다. 그러나 진화는 발생해있다.”[4]  


진화를 상상하기 어려운 이유는 결코 진화가 일어나지 않았기 때문이다. 무작위적인 돌연변이들에 의한 자연적 과정은 상호의존적이고, 협력적인 복잡한 몸체 기관들을 모두 같이 만들어낼 수 없을뿐더러, 만들어지지도 않는다. 이러한 종류의 우아한 메커니즘은 그들이 하나씩 하나씩 점진적으로 만들어진 것이 아니라, 모두 동시에 존재했음을 가리킨다. 이것은 수염고래가 우연에 의한 진화가 아니라, 설계에 의해서 창조되었음을 가리킨다.



References

1. Pyenson, N. D. et al. 2012. Discovery of a sensory organ that coordinates lunge feeding in rorqual whales. Nature. 485 (7399): 498-501.
2. Heyning, J. E., and J. G. Mead. 1997. Thermoregulation in the Mouths of Feeding Gray Whales. Science. 297 (5340): 1128-1140.
3. Vogl, A. W. et al. 2015. Stretchy nerves are an essential component of the extreme feeding mechanism of rorqual whales. Current Biology. 25 (9): R360-R361.
4. Benton, M. J. 2005. Vertebrate Paleontology. Malden, MA: Blackwell Science, 342. 



번역 - 미디어위원회

링크 - http://www.icr.org/article/8778

출처 - ICR News, 2015. 5. 14.

구분 - 4

옛 주소 - http://www.kacr.or.kr/library/itemview.asp?no=6160

참고 : 5408|6159|6090|6013|5902|5876|5839|5743|4837|4917|5293|5182|5174|4680|4538|4410|3639|4130|3969|3814|3307|2952|5866|5314|5308|2375|1810



서울특별시 중구 삼일대로 4길 9 라이온스 빌딩 401호

대표전화 02-419-6465  /  팩스 02-451-0130  /  desk@creation.kr

고유번호 : 219-82-00916             Copyright ⓒ 한국창조과학회

상호명 : (주)창조과학미디어  /  대표자 : 오경숙

사업자번호 : 120-87-70892

통신판매업신고 : 제 2018-서울중구-0764 호

주소 : 서울특별시 중구 삼일대로 4길 9, 라이온스빌딩 401호

대표전화 : 02-419-6484

개인정보책임자 : 김광