노아 홍수가 운반했던 막대한 량의 규암 자갈들 Part 2 : 로키산맥의 서쪽 지역

미디어위원회
2021-02-22

노아 홍수가 운반했던 막대한 량의 규암 자갈들 Part 2 : 로키산맥의 서쪽 지역
(Flood transported quartzites Part 2 : west of the Rocky Mountains)

by Michael Oard, John Hergenrather and Peter Klevberg


      아이다호 주 북부와 중부, 몬태나 주 북서부 및 캐나다 인접 지역의 분명한 근원 지역으로부터 멀리 서쪽으로 놓여있는 매우 둥근 규암 자갈들은 지난 12년 동안의 광범위한 현장 연구와 논문들을 통해 기술되어 왔다. 이들 규암 자갈들은 근원으로부터 약 700km 떨어진 곳에 위치한 태평양과 같은 서쪽 끝에도 있다. 규암 자갈들은 계곡 바닥은 물론이고, 산꼭대기와 능선에서도 발견된다. 규암 자갈들은 얇은 층으로, 또는 일부 장소에서는 적체되어 나타난다. 규암 거력들과 굵은 자갈들은 흔히 철로 얼룩져 있으며, 충격흔(충돌자국)들을 갖고 있다. 때때로 금이 기질 내에서 발견된다. 이 퇴적물은 노아의 홍수의 후퇴기에 대한 강력한 증거를 제공한다.

-------------------------------------------------------

서론

Part 1에서 우리는 근원지역인 로키산맥에서 동쪽으로 발견되는 매우 둥근 규암 자갈들이 있는 위치들을 요약했다(그림 1). 규암의 근원이 되는 암석들은 몬태나 북서부, 아이다호 북부, 아이다호주 중부, 워싱턴주 북동부 등의 로키산맥 북부의 벨트 지층(Belt Formation)에 노출되어 있다. 규암 거력들과 굵은 자갈들은 노스다코타 북서쪽의 평원 멀리로 최소 1,000km 이상 운반되었다. 이 규암 자갈들은 종종 평원에 높이 솟아있는 고원 표면에서도 발견된다. 우리는 또한 Part 1에서 규암 자갈들이 몬태나 주 남서쪽과 아이다호 주 및 인접 산악지역과, 와이오밍 주 북서부까지 퍼져있는 것을 보고했다. 이들 지역에서 규암 자갈들은 티톤산(Teton Mountains) 북쪽과 같은 산꼭대기에서도 발견되며, 계곡에는 깊이 4,000m가 넘게 퇴적되어있다.

본 논문에서는 근원 지역의 서쪽인 오리건 주와 워싱턴 주의 여러 지역에 분포해있는 규암 자갈들의 위치를 문서화하였다(그림 2). 규암 자갈들은 근원 지역의 서쪽으로 산꼭대기, 능선, 계곡, 분지에서 발견된다. 일부 규암 자갈들은 가장 가까운 근원(출처)으로부터 약 700km 떨어진 워싱턴 주 해안에서도 발견된다.

그림 1. 아이다호 북부와 중부, 몬태나 북서부에 있는 규암들의 노두 지역. 아이다호 서중부에 있는 아이다호 바톨리스(Idaho batholith, 저반, 심성암체)도 표시해 놓았다. 


서쪽으로 운반된 규암 자갈들은 대부분의 콜롬비아강 현무암에 퍼져있기 때문에, 둥근 현무암 쇄설암들이 자주 규암들과 함께 발견되는 것은 놀라운 일이 아니다. 때때로, 현무암은 자갈 퇴적물 내의 쇄설암의 대부분을 형성하고 있다.


오리건 주 중부와 북동부

둥근 규암 자갈들이 발견되는 가장 인상적인 장소 중 하나는, 오리건 주 중부의 번스(Burns)에서 북쪽으로 45km 떨어진 골드힐(Gold Hill) 정상부이다. 골드힐의 해발고도는 1,959m이다. 또한 오레곤 주의 블루산(Blue Mountains) 정상부에도 있다. 또한 굵은 규암 자갈들은 골드힐 서쪽과 북서쪽으로 1~2km 떨어진 능선과 언덕에서도 발견된다. 작은 도랑과 흙 숲길에는 약 25cm의 토양으로 덮여있는 굵은 자갈(cobbles)들이 노출되어있다(그림 3). 굵은 자갈들은 미오세 안산암(andesite) 위에 놓여있다.(동일과정설적 지질시대 이름은 소통을 위한 목적으로만 사용되며, 주장되는 연대, 지질주상도, 오랜 시간 틀을 수용한다는 의미가 아니다.) 쇄설암은 규암과 지역적 암석들을 포함하고 있다. 쇄설암의 평균 크기는 약 5cm이고, 최대 약 15cm 정도이다. 쇄설암에 거의 충격흔이 나있지 않고, 철의 얼룩도 보이지 않는다. 또한 금(gold)이 규암들 사이에 발생되어 있는데, 이것이 골드힐이라고 불려지게 된 주된 이유이다.

규암 자갈들은 근원 지역의 서쪽으로 산꼭대기, 능선, 계곡, 분지에서 발견된다. 일부 규암 자갈들은 가장 가까운 근원(출처)으로부터 약 700km 떨어진 워싱턴 주 해안에서도 발견된다.

두 번째 장소는 오리건 주 중부에 위치한, 골드힐에서 북서쪽으로 약 60km 떨어진, 파울리나(Paulina)에서 동쪽으로 15~25km 떨어진, 비버 크릭(Beaver Creek) 배수 지역이다. 커다란 둥근 규암 자갈들이 약 25㎢ 면적의 지표면에 뒤덮여있다(그림 4). 그들은 또한 비버 크릭의 남쪽 갈래를 따라 테라스(terraces, 단구. 계단모양의 지형)에서 3m 깊이로 발견되며, 약 50%의 지역적 화산성 쇄설암들과 혼합되어 있다. 규암 자갈들의 평균 크기는 중간축을 따라 약 12cm이며, 최대 약 30cm이다. 규암들 중 약 5%는 충격흔이 있고, 철의 얼룩이 거의 없다. 굵은 자갈과 거력들은 지지되는 기질(matrix)이 되는 것으로 나타난다. 이 규암들은 그들의 가장 가까운 근원에서 동쪽과 북동쪽으로 약 450km 운반되었다.

규암 자갈들과 거력들의 광범위한 노두(outcrops)들이 오리건 주 북동부 라그란드(LaGrand)에서 동쪽으로 약 40km 떨어진 왈로와 산맥(Wallowa Mountains)에 발견되고 있는데, 서쪽 능선들과 봉우리들을 대부분 뒤덮고 있다.[2,3] 그 암석들은 해발 1,402~2,658m의 고도에서 발생되어 있으며, 때때로 컬럼비아강 현무암 아래에서도 발견된다. 그림 5는 왈로와 산맥의 2,500m 고도의 룩아웃 산(Lookout Mountain) 바로 남동쪽 능선에 있는, 약 10m 두께의 커다란 규암 자갈들을 보여준다. 문헌에는 직경 1m의 규암 거력이 보고되어 있지만[4], 우리가 발견한 가장 큰 쇄설암은 직경이 약 60cm이고, 무게가 약 200kg이다(그림 6). 큰 암석들에는 일반적으로 충격흔(percussion marks, 충돌 자국)들이 있었는데(그림 7), 알렌 박사가[3] 규암 자갈들은 급류에 퇴적되었다고 보았던 이유 중 하나이다. 한 굵은 자갈은 심지어 그 둘레에 비정상적인 채터마크(chattermark) 흔적을 보여주었다(그림 8).

그림 2. 아이다호 서부, 오리건, 워싱턴 주에 있는 규암 자갈들의 위치. 


룩아웃 산 바로 동쪽의 짐화이트 리지(Jim White Ridge)에서 조사된 거력들의 90%는 규암이었다. 많은 거력들이 풍부한 충격흔들을 갖고 있었고, 소수의 암석들은 압력용해 흔적(pressure solution marks)을 갖고 있었는데(그림 9), 이는 한 때 그 위로 놓여졌던 암석들에 의해 고압에 노출됐음에 기인한다(Part 1을 보라). 철분 녹청을 갖고 있는 것은 거의 없었다. 짐화이트 리지에 있는 거력들은 북쪽과 북서쪽으로 3km 정도 확장되어 있고, 면적은 약 3㎢이다. 그 암석들은 왈로와 산맥의 화강암질 기반암 위에 형성되어 있는데, '미오세' 이전의 침식 표면 위에 놓여있다. 최대 약 25cm(중간 축) 크기의 쇄설암들로 이루어진 짐화이트 리지의 광범위한 규암 자갈 퇴적물은 두께가 최대 55m에 이른다. 알렌 박사에 따르면, 이 거력들은 깨지기 쉽고, 풍화를 많이 받은, 분류된 저반의 모래와 자갈로서, 지지되는 기질이 되고 있다.[3] 굵은 자갈과 거력들의 대부분은 지연(lag, 뒤처진) 것으로 나타난다. 금은 기질 내에 발생되어 있으며, 현장의 자갈 더미에서 사금(placer gold)으로 채굴되었다.

우리는 알렌의 보고서에는 언급되지 않은, 왈로와 산맥의 다른 장소에서 규암 거력들을 발견했다. 한 지역은 모스 스프링스 가드 역(Moss Springs Guard Station)에서 남서쪽으로 3~8km 떨어져 있는 곳이다. 이 발견은 규암 자갈의 범위가 더 넓음을 가리키는 것이고, 이 규암 자갈들은 알렌 박사의 '급류 흐름(torrential stream)' 운반 가설에 추가적 연구가 필요함을 보여준다. 규암 자갈과 거력들이 리틀미남 강(Little Minam River) 유역 산등성이 아래에 얇게 흩어져 있다. 이 암석들은 아마도 왈로우 산맥의 더 많은 장소들에서도 발견될 것이다.

규암들은 중심 화강암이 콜롬비아강 현무암으로 덮여있는 왈로와 산맥의 노두에는 없다. 규암의 가장 가까운 근원은 아이다호 주 중부에서 동쪽으로 약 200km, 북동쪽으로 약 200km 떨어져 있다. 현재 왈로와 산맥과 규암 근원지 사이에 2500km 길이로 깊은 수극(water gap)들을 갖고 있는 헬스 캐니언(Hells Canyon)이 놓여 있다. 

알렌은 규암 자갈들이 오리건 주 북동부의 광대한 범위에 쌓여 있음을 확인하였다. 그는 짐화이트 리지(Jim White Ridge)에 있는 금 사광(placer gold deposit)을 언급하면서 이렇게 말했다 : “오레곤 주 북동부의 많은 지역에서 규암 거력들에 들어있는 금을 채굴하기 위한 광산들이 있었다”[5] 카슨(Carson)은 이 진술을 강화시켜주고 있다 : “규암이 풍부한 충적토와 흩어져있는 거력 및 굵은 자갈들이 오레곤 주 북동부의 넓은 지역에 놓여있다는 것은 잘 알려져 있다.”[6] 워싱턴 주 왈라왈라에 있는 휘트먼 대학의 케빈 포그와 로버트 카슨(Kevin Pogue and Robert Carson)은 앨런의 진술을 강화시켜주고 있는데, 규암 거력과 굵은 자갈들을 포함하는 엘크혼(Elkhorn)과 블루산맥(Blue Mountains)에는 폐광산들이 많다는 것이다. 하나는 베이커에서 남서쪽으로 50km 떨어진 그린혼(Greenhorn) 부근에 있다. 창조론자인 브렌트 카터(Brent Carter)는 오리건 주 펜들턴(Pendleton) 남동쪽, 블루산맥 북부에 규암 자갈들의 여러 금 광산들이 있다고 말한다. 우리는 이들 다른 장소들을 조사하지는 않았다.


달라스로부터 태평양에 이르는 컬럼비아강 계곡

규암 자갈들은 오리건 주 댈러스 부근에서 태평양까지, 여러 곳의 노두에서 발견된다. 자갈들 또는 역암들은 트라우트데일 지층(Troutdale Formation), 샛솝 지층(Satsop Formation), 후드리버 역암층(Hood River Conglomerates), 스나입스산 역암층(Snipes Mountain Conglomerate)과 같은 여러 이름들이 붙여져 있다. 동일과정설 과학자들은 일반적으로 컬럼비아강 지역에 대해 트라우트데일 지층으로 부르고 있다. 우리는 달라스 주변에서 조사를 시작하여, 서쪽으로 이동할 것이다.

그림 3. 오리건 중부의 블루산맥 골드 힐(Gold Hill) 정상부에 있는 규암 자갈들. 


규암 자갈의 노두들은 워싱턴주 컬럼비아강 경사면을 따라 호스헤븐 힐스(Horse Heaven Hills)의 900m 이상 고도의 여러 곳에서 발견된다.[7-9] 가장 높은 위치는 워싱턴 주 골든데일 북쪽의 호스헤븐 힐스 능선에 있는, 새터스 패스(Satus Pass) 동쪽 1,330m 고도에서도 발견된다.[10] 또한 규암 자갈들은 97번 고속도로를 따라 골든데일 북쪽 8km 주변에서도 발견된다.(그림 10). 이 위치에 있는 규암 자갈들은 충격흔과 철로 얼룩진 흔적을 갖고 있다. 하지만, 쇄설암은 호스헤븐 힐스의 다른 지역에 비해 작다. 규암 자갈들은 골든데일의 동쪽과 서쪽으로 확장되어 여러 노두들에서 발견된다. 우리는 규암 자갈들을 골든데일에서 북동쪽으로 45km 떨어진 비클턴(Bickleton)까지 먼 곳에서도 보았다. 또한 규암 자갈들은 비클턴의 북쪽과 동쪽에서 보고되어왔다.[11] 대게 쇄설암의 대부분을 차지하는 이들 규암 자갈들의 많은 수가 철로 심하게 얼룩져서, 오렌지색이나 붉은색을 띠고 있다.

그림 4. 오리건 주 중부 파울리나(Paulina)에서 동쪽으로 25km 떨어진 버나드 목장(Bernard Ranch)에 있는 규암 자갈들. 


접근성이 매우 좋은 위치 중 하나는 골든데일에서 북쪽으로 약 11km 떨어진 곳에 있다. 스리 크릭스 로지(Three Creeks Lodge)에서 서쪽으로 꺾인 도로 주변이 그곳이다. 이 길을 따라 2km 정도 가면 큰 언덕에 규암 자갈들이 약간씩 노출되어 있다. 더 가파른 곳에는 규암 자갈들이 모래 토양에 2~3m 깊이로 섞여 있다. 자갈들은 가장 큰 것이 15cm(중간축)이며, 평균 3cm 정도이다. 이 언덕의 서쪽과 남서쪽에는 규암 자갈들이 있는 다른 장소들이 있다.

몇몇 다른 규암 자갈 지역들이 오레곤 주 댈러스 건너편 컬럼비아강 북쪽에 있는, 워싱턴 주 컬럼비아 힐스(Columbia Hills) 근처에서 발견된다.[8] 또한 댈러스 주변의 달레스 지층(Dalles Formation) 아래에도 규암 자갈들이 있다.[12] 

컬럼비아 힐스 북쪽으로, 하이 프레리(High Prairie)에도 90%가 규암인 자갈들이 발견된다.[13] 헤르젠라더(Hergenrather)는 이 지점과 클리키타트 강(Klickitat River) 서쪽 언덕에서 광범위한 규암 자갈들을 조사했다. 지역 주민들은 그것을 ‘슈가 구슬(sugar agates)’이라고 부르고 있었는데, 또한 '감자 돌' 또는 '강 돌'이라고도 부르고 있었다. 이들 규암 쇄설암은 철로 얼룩져 있고, 평균 4cm(중간축) 크기지만, 30cm 정도 되는 거력도 하나 있었다.

워싱턴 주 화이트 새몬(White Salmon)에서 동쪽으로 약 14km 떨어진, 14번 고속도로와 북쪽으로 평행하게 나있는 한 오래된 고속도로 근처에서, 도로 위 약 60m 높이에 2m 정도의 절벽을 이루고 있는, 발치 레이크 역암(Balch Lake Conglomerate)에서 규암 자갈들이 발견된다. 규암 쇄설암은 치밀하게 시멘트화된 역암들을 약 1% 정도 포함하고 있는데, 역암들은 약 1~2cm 크기로, 최대 4cm 정도이다.

규암 자갈들에 매우 쉽게 접근할 수 있는 한 장소는 워싱턴 14번 고속도로를 따라, 화이트 새몬에서 서쪽으로 약 4km 떨어진, 화이트 새몬 강의 다리 서쪽 100m 지점이다(그림 11). 평탄한 층의 자갈들은 언더우드 자갈(Underwood gravel)로 불리고 있다.[14, 15] 자갈들은 강 옆의 절벽 기저부에 위치해 있다. 그 자갈들은 지역적 언더우드 산의 화산흐름 아래에 갇혀 있어서, 이후에 침식되는 것을 막았다. 자갈들의 대부분은 지역적 화산쇄설물로 이루어져 있지만, 약 25~30%는 매우 둥글고 윤이 나는 규암으로 이루어져 있다. 규암 자갈들은 약 4cm 크기로, 최대 15cm인 것도 있다. 이 지층은 미졸라 호수의 홍수(Lake Missoula flood)로 잘려져 있다.[16] 또한 규암 자갈들은 오리건 주 후드강 동쪽과 서쪽의 화이트 새몬(White Salmon)에서부터 컬럼비아 강 건너까지 발견되었다.[17, 18] 더 많은 규암 자갈들이 댈러스와 로웨나 서쪽의 후드강 사이에서 발견된다.[12]

후드 강과 화이트 새몬에서부터 컬럼비아 강 아래에는 트라우트데일 지층(Troutdale Formation)이 많이 노출되어 있다. 비록 정식 명칭은 아니지만, 드문 규암 자갈들이 컬럼비아 협곡의 후드 강 서쪽의 미첼 포인트(Mitchell Point)에 있는 포모나 및 프렌치만 스프링스 현무암(Pomona and Frenchman Springs basalts) 사이에서 발견된다.[19] 현무암과 규암 쇄설암의 인상적인 두터운 노출은 오리건 주 트라우트데일에서 동쪽으로 18km 떨어진, 브리달 베일 수로(Bridal Veil Channel)에서 볼 수 있다. 오래된 컬럼비아 강 수로는 현재의 수로 남쪽으로 흘렀을 것으로 여겨진다. 후드 산(Mount Hood)은 오늘날 이 '수로' 위로 놓여있다. 브리드 베일 수로의 현무암 및 규암 자갈의 총 두께는 335m이다.[20~22] 

그림 5. 오리건 주 북동부의 월로와 산맥(Wallowa Mountains)의 룩아웃 산(Lookout Mountain) 바로 남동쪽에 있는, 대부분 규암 자갈들로 이루어진 10m 두께의 노두.
그림 6. 그림 5의 노두에서 발견된 200kg의 규암. 앞쪽의 날카로운 각진 암석들은 동결-해빙에 의해 조각났기 때문일 것이다. (Photograph by Paul Kollas).
그림 7. 오리건 주 북동부의 월로와 산맥의 룩아웃산 바로 남동쪽의 갈라진 암석(동결-해빙 작용에 의한 것으로 추정)에 나있는 충격흔(percussion marks, 충돌 자국).
그림 8. 오리건 주 북동부의 월로와 산맥의 룩아웃산 바로 남동쪽의 쇄설암 주변에 이어져있는 규암 자갈들의 채터마크 자국(chattermark trail).
그림 9. 오리건 주 북동부 왈로와 산맥의 짐 화이트 리지(Jim White Ridge)에 있는 압력용해 흔적(pressure solution marks)을 갖고 있는 규암. 압력용해 흔적은 암석의 밝은 부분에 원처럼 희미하게 보인다.
그림 10. 오리건 주 북동부의 왈로와 산맥의 97번 고속도로를 따라, 워싱턴 주 골든데일에서 북쪽으로 8km 떨어진 곳에 있는, 철로 얼룩진 작은 규암 자갈들.
그림 11. 워싱턴 주 화이트 새몬 강의 다리 바로 서쪽으로부터 아래쪽으로 약 25~30%의 규암 쇄설암을 갖고 있는, 평탄한 층리의 둥근 화산성 역암. 가장 큰 쇄설암은 화산성이다. 서있는 데이브 앤더슨(Dave Anderson)이 스케일을 제공한다.


하렌 브레츠(J. Harlan Bretz)는 규암 쇄설암에 포함되어 지역적 암석과 뒤섞여있는 자갈들이 샌디강(Sandy River) 서쪽 후드강(Hood River) 마을들로부터 컬럼비아강 남쪽의 높은 고도의 오리건 폭포(Oregon Cascades)를 가로질러서도 흩어져 있는 것을 발견했다.[23] 한 위치는 1,170m 고도의 오리건 폭포를 가로질러 벤슨 고원(Benson Plateau) 중간쯤의 지역이다. 이곳에 자갈들은 220m 두께로 쌓여있다. 로우리와 발드윈(Lowry and Baldwin)은 와이어스(Wyeth) 시에서 남쪽으로 3km 떨어진, 비엔토 강(Viento Creek)의 상류에서 동쪽으로 850m 고도에 쌓여있는 규암 자갈들을 보고함으로서, 브레츠의 주장을 강화해주고 있다.[24] 

윌라메트 계곡의 동쪽으로, 클라크마스 강 북쪽의 트라우트데일 지층(Troutdale Formation)의 광범위한 지역의 노두들에서 규암 자갈들이 발견되었다.[25] 우리는 오리건 주 트라우트데일(Troutdale) 바로 남동쪽에 있는 샌디강 고속도로(Sandy River Highway) 옆에 있는 절벽과 잘려진 도로 옆에서 규암 자갈들을 관측하였다(그림 12). 트라우트데일 남동쪽으로 4~6km 떨어진 곳에 있는 역암층 내의 규암 자갈들은 약 2~3%(20% 지점)의 굵은 자갈들을 포함하고 있다. 규암 자갈들은 일반적으로 쇄설암으로 지지된다. 우리는 지름 10cm에 이르는 자갈들을 발견했는데, 규암 자갈들은 샌디강 상류에서 남동쪽으로 25km 떨어진 곳까지 발견되며, 그곳을 지나서는 사라진다.[26] 우리는 또한 워싱턴 주 밴쿠버 동쪽 14번 고속도로를 따라 트라우트데일 지층에서 규암 자갈들을 관측했다. 이 역암들은 포틀랜드-밴쿠버 지역에 거대한 자갈사주(gravel bar)를 퇴적시켰던 미졸라 호수의 홍수에 의해 퇴적되지 않았다.

포틀랜드-밴쿠버 서쪽으로부터 태평양에 이르는, 컬럼비아 강 근처에는 규암 자갈들의 작은 노두들이 많이 있다. 규암 자갈들은 주로 쇄설암으로 형성되어 있는데, 기질 현무암과 안산암(andesites)의 쇄설암과 혼합되어 있다. 규암 쇄설암은 때때로 용암 기질의 꼭대기에서 발견되기도 하고, 때로는 교차되어(interbedded) 있기도 한다.[8, 27] 로우리와 발드윈(Lowry and Baldwin)은 포틀랜드 남동쪽의 285m 고도의 보링 힐스(Boring Hills)에서, 그리고 오리건 주 포틀랜드 서쪽의 포틀랜드 힐스 실트(Portland Hills silt)에서 규암 자갈들을 보고했다.[28] 우리는 오리건 주 포틀랜드의 205번과 84번 고속도로 교차점 근처의 로키 뷰트(Rocky Butte)를 덮고 있는 규암 자갈들을 관측했다.[29] 오리건 주 포틀랜드에서 약 40마일 아래쪽인 세인트 헬렌 마을 근처에는 규암 쇄설물로 보이는 300m 깊이의 트라우트데일 지층(Troutdale Formation)의 노두가 있다.[30] 트라우트데일 지층은 또한 세인트 헬렌에서부터 태평양까지 간헐적으로 발견된다. 로우리와 발드윈은 워싱턴 주 남서부 체할리스(Chehalis)에서 남쪽으로 약 10km 떨어진, 롱뷰(Longview)에서 컬럼비아 강에서 북쪽으로 60km 떨어진 190m 고도의 언덕들에서 규암 자갈들을 발견했다.[31] 브레츠는 태평양의 윌라파 만(Willapa Bay)을 따라 바다 테라스(marine terraces)에서 규암 자갈을 관찰했다.[32, 33] 규암 자갈들은 바다 아래 바닥에서부터 24m 높이의 상층부 지표면까지 놓여있다. 이 위치는 규암 자갈들이 아이다호 주 중부에서 가장 가까운 규암 근원에서 약 700km 떨어진 곳까지 운반되었음을 가리킨다.


워싱턴 주 중남부

워싱턴 주 중남부 컬럼비아강 협곡(Columbia River Gorge) 북동쪽에는 규암 자갈들이 여러 곳에 산재되어 발견된다. 컬럼비아강 현무암은 워싱턴 주 중남부에 동서 방향으로 정렬된 일련의 현무암 배사구조(basalt anticlines)를 형성하고 있다. 이곳에서 호스 헤븐 힐스 배사구조(Horse Heaven Hills anticline)는 가장 남쪽에 위치한다. 규암 자갈들은 이 모든 배사구조 꼭대기에 놓여있는데, 때때로 정상 부근의 현무암류(basalt flows) 사이에 끼어 있다.[8, 34] 우리는 앞에서 호스 헤븐 힐스의 정상부와 능선 바로 남쪽에 규암 자갈들에 대해서 언급했다. 또한 호스 헤븐 힐스의 북쪽 경사지에는 약간의 노두들이 있다. 한 장소(노두)는 프로서(Prosser) 시 바로 남쪽에 있다.[35] 

그림 12. 84번 고속도로에서 남쪽으로 5km 떨어진, 샌디강 동쪽 둑을 따라 작은 규암들을 포함하고 있는 둥근 화산성 역암.[84] 


호스 헤븐 힐스 북쪽의 다음 배사구조는 토페니시 리지(Toppennish Ridge)이다. 현저한 한 규암 자갈들의 위치는 이 능선의 동쪽 끝 정상부이다.[36, 37], 토페니시 리지 북쪽의, 아타눔 리지(Ahtanum Ridge) 위에도 규암 자갈들이 있으며, 동쪽으로 확장되어 래틀 스네이크 힐스(Rattlesnake Hills)와 많은 위치들에서 발견된다.[38, 39] 또한 규암 자갈들은 북쪽으로 다음 배사구조인 야키마와 움타눔 리지(Yakima and Umtanum Ridges)의 동쪽 끝에서도 발견된다.[40–42] 

규암 자갈층에 접근하기 쉬운 한 장소는 스나이프스 산(Snipes Mountain)의 남쪽 측면을 따라, 그레인저(Granger)와 서니사이드(Sunnyside) 사이의 82번 고속도로 남쪽의 야키마 계곡(Yakima Valley)에 노출되어 있는, 동서쪽의 낮은 현무암 능선이다.(그림 13과 14)[38] 또한 규암 자갈들은 서니사이드 시 내에도 노출되어 있다. 이들은 현무암 산등성이의 이름을 따서, 스나이프스 산 역암(Snipes Mountain Groups)으로 불려왔다. 규암 자갈들은 수평으로 층을 이루고 있고, 쇄설암의 약 60%를 차지하는데, 철분으로 심하게 얼룩져있다. 

또한 현 위치에서 규암 자갈들은 북쪽으로 다음 배사구조 위에 놓여져 있다. 이곳은 새들산(Saddle Mountains)인데, 이곳에서 노두는 새들산을 548m 고도에서 관통하는 컬럼비아 강의 센티넬 갭(Sentinel Gap) 바로 동쪽에 발생해 있다.[40, 43] 센티넬 갭에서 하류로 가면서, 규암들은 미졸라 호수 홍수 동안에 쌓여졌던 약 40m 높이, 200㎢의 거대한 경사진 자갈 사주(gravel bar) 내에서 종종 발견된다(그림 15). 그것은 왈루크 슬로프(Wahluke slope)라 불려진다. 야키마에서 동쪽으로 약 65km 떨어진, 베르니타 다리(Vernita Bridge) 바로 북쪽에서, 우리는 사주(bar)에 평균 5cm 최대 20cm의 규암 자갈들이 1~3% 포함되어 있는 것을 발견했다.

우리는 또한 새들산과 북쪽으로 다음 배사구조인 프렌치만 힐스(Frenchman Hills) 사이에서 규암 자갈들을 발견했다. 이곳은 컬럼비아 강에서 동쪽으로 몇 km 떨어진 곳이다. 이 규암 자갈들은 아마도 프렌치만 힐스에서 침식되었을 것이다. 왜냐하면 그 자갈들은 언덕의 남쪽 경사면에서 발견되기 때문이다. 하렌 브레츠는 새들 산과 프렌치만 배사구조 양쪽 서부의 완만한 경사면에서 규암 자갈이 발견된다고 지적한다.[44] 

그림 13. 그레인저와 서니사이드 사이의 스나이프스 산(Snipes Mountain)의 로어 야키마 계곡(Lower Yakima Valley) 바로 남쪽에 위치한, 수평적으로 층리를 이룬 스나이프스산 역암. 


규암 자갈 지대에 대한 가장 놀라운 곳 중 하나는 컬럼비아강 현무암 배사구조의 서쪽, 배사 능선에 있는 캐스케이드 산맥의 동쪽 경사면에 있다.[34] 불행히도, 이 특별한 장소들은 언급되지 않았다. 능선에 있는 규암 자갈들은 아마도 워싱턴주 엘렌스버그(Ellensburg)에서 서쪽으로 15km 떨어진, 소프 자갈층(Thorpe Gravels)에서 직경 2~4cm의 규암 쇄설암들의 발견되는 것을 설명할 수 있다(그림 16). 소프 자갈층은 엘렌스버그의 서쪽과 북쪽에서 넓게 노출되어 있는, 수평적 층을 이룬 화산성 역암층(volcanic conglomerate)이다. 자갈들은 북서쪽에서 180m 두께를 이루고 있으며, 25km 떨어진 남쪽 가장자리에서 약 15m까지 얇아지고 있다.[45] 워싱턴주 야키마(Yakima) 서쪽에 상당히 대규모로 노출된 노두 옆으로, 엘렌스버그 동쪽에는 고립된 노두들이 있다. 소프 자갈은 빙하와는 관련이 없으며, 캐스케이드 산맥 동쪽으로 이동하던, 그리고 야키마의 서쪽 분지들과 마찬가지로 키티타스 분지(Kittitas Basin)를 매적(매립)했던, 서북쪽의 거대한 물의 근원이 있었음을 의미한다.

워싱턴 주 중남부의 규암 자갈들은 일반적으로 능선이나 배사구조 위에 놓여있지만, 낮은 고도의 여러 장소들에도 있다. 쉽게 접근할 수 있는 한 장소는 워싱턴 주 파스코에서 북동쪽으로 약 65km 떨어진, 스네이크 강의 로어 모뉴먼트 댐(Lower Monumental Dam) 바로 남쪽에 있다. 이 규암 자갈들은 계곡 사이사이에 끼어있고, 현무암에 잘라냈으며, 새들산 현무암 위의 협곡내 흐름이다(그림 17과 18). 규암 자갈들은 대부분의 현무암 자갈들과 암석들 중 약 15~25%를 차지한다. 규암 자갈의 평균 크기는 약 7cm이고, 최대 크기는 약 20cm이다.

규암 자갈들의 또 다른 노두들은 센티넬 갭(Sentinel Gap) 남동쪽의 컬럼비아 강 인근에 있는, 링골드 지층(Ringold Formation)의 여러 곳에서이다.[46, 47] 이곳은 현재 핸퍼드 핵시설(Hanford Nuclear Site)이 있는 화이트 블러프스(White Bluffs) 지역 주변이다. 대부분의 외래 쇄설암(exotic clasts)들은 규암이다.[46] 이 규암 자갈들은 광범위하게 분포하는데, 파스코 분지(Pasco Basin) 중앙부의 많은 드릴 구멍에서 발견된다.[48] 링골드 지층은 미졸라 호수의 홍수 퇴적물 아래에 있다.

작은 비율의 규암 자갈들은 오레곤 주 중북부의 달레스 지층(The Dalles Formation)에서 이미 보고됐었다. 그러나 워싱턴 주 엘렌스버그 지층(Ellensburg Formation)에는 많은 장소들이 있는데, 그곳에서 규암 자갈들은 용암류 사이에 물로 퇴적된 층들 사이에 포함되어 있다.[8] 맥킨(Mackin)은 센티넬 갭 남쪽에 있는 엘렌스버그 지층 내에 5~10% 규암들을 가진 역암을 기술하고 있는데, 이 역암들은 현재 프리스트 래피즈 호수(Priest Rapids Lake)가 있는 강의 서쪽 측면에, 그리고 셀라 배사구조(Selah anticline) 위의 현무암 사이에 있는, 야키마 북쪽의 또 다른 지역에 쌓여있다.[49] 파스코 분지의 두꺼운 현무암에서 뚫은 깊은 굴착공은 규암 자갈층을 통과했을 수도 있지만, 그들은 '포획암(xenoliths)'으로 간주했다.[50]


워싱턴 주 남동부와 헬스 캐니언

자갈과 역암들의 노두들은 루이스턴(Lewiston, 아이다호 주)과 클락스턴(Clarkston, 워싱턴 주) 사이의 지역과 헬스 캐니언을 관통하는 스네이크 강 상류에 광범위하게 분포한다. 또한 미졸라 홍수와 보네빌 홍수(Bonneville floods)와 관련된 자갈들도 있지만[16], 검토 결과 이 자갈들은 그 사건과 관련이 없었다. 규암을 포함하는 자갈들은 두께가 100m 이상이고, 고도가 375m 이상에 놓여있다. 그 자갈들은 꽤 다양한 화성암과 변성암을 포함하고 있다.[51–53] 우리는 그러한 자갈들을 클락스턴에서부터 스네이크 강을 따라, 리틀구스 댐(Little Goose Dam) 서쪽 약 1km 떨어진 곳에서 관측했다. 그 암석들은 대부분 둥글고, 철로 얼룩진 규암들이었다. 이것은 그리 놀라운 일이 아니다. 왜냐하면 벨트 슈퍼그룹(Belt Supergroup)은 동쪽으로 약 80km, 북동쪽으로 약 40km 까지 노출되어 있기 때문이다. 일부 자갈들은 로어 모뉴먼트 댐 하류의 자갈들처럼, 협곡내 용암류(lava flow)에 의해서 덮여져 있다.[54] 또한 자갈층에는 4m 두께의 대형 사층리(cross beds)가 있다.[55] 워싱턴 주 클락스턴의 자갈들은 한때 ‘플라이스토세(Pleistocene)'로 생각됐었지만, 현재는 '플라이오세(Pliocene)' 또는 '미오세(Miocene)'로 여겨지고 있다.[56] 이러한 ‘플라이스토세'로부터 '플라이오세', '미오세'로의 연대 재평가는 정당성이 없는 것처럼 보인다.

그림 14. 스나이프스 산 역암(Snipes Mountain conglomerate)의 근접 사진. 지질망치 아래에 심하게 철분으로 얼룩진 규암 자갈을 주목하라. 

그림 15. 사진 중앙에 서쪽에서 동쪽으로 달리고 있는 나무들로 윤곽을 알 수 있는 컬럼비아 강의 북쪽 전경. 미졸라 홍수로 형성된 컬럼비아 강의 바로 북쪽에서, 거대한 자갈 사주(gravel bar)를 볼 수 있다. 그 자갈들에는 침식된 규암들이 소량 포함되어 있다. 배경은 새들산(Saddle Mountains)으로 현무암의 비대칭 배사구조이다. 

그림 16. 워싱턴 주 엘렌스버그에서 서쪽으로 8km 떨어진, 10번 고속도로에서 북쪽으로 75m 고도에 테라스를 형성하고 있는 수평적 층리를 가진 소프 자갈(Thorp gravel). 

그림 17. 로어 모뉴먼트 댐(Lower Monumental Dam)의 바로 하류인 스네이크강 계곡의 협곡내 현무암류에 의해서 겹쳐 놓여있는 규암과 현무암질 역암. 

그림 18. 그림 17에서 보여진 둥근 역암 자갈들과 거력들의 근접 사진. 물 흐름이 서쪽으로 흐르며 자갈들을 퇴적시킨 것을 보여주는, 잘 발달된 쇄설암 비늘무늬(clast imbrication)가 있다. 


규암 거력들은 일반적으로 워싱턴 주 클락스턴 남쪽의 헬스 캐니언(Hells Canyon) 지역 전체에 침식된 표면에 흩어져 있다.[57] 헬스 캐니언은 그랜드 캐니언보다 더 깊은 100km 길이의 긴 수극(water gap)이다. 규암 자갈들은 심지어 협곡 내의 컬럼비아강 현무암 그룹 아래에서도 노출되어 있다. 헬스 캐니언 남부의 석회암 위에 있는 한 노두에 대해서는 다음과 같이 기술되어 있다 :

“규암 거력과 자갈들은 헬스 캐니언 남부의 맥그로(McGraw)와 스프링(Spring) 지류 사이의 마틴 브릿지 석회암(Martin Bridge Limestone)의 침식된 표면을 따라, 수박처럼 흩어져 있다. 가장 큰 거력은 지름이 약 60cm이며, 흔히 나있는 충격흔은 암석들이 격렬하게 흘렀던 물에서 서로 강하게 부딪혔음을 가리킨다.”[58] 


워싱턴 주의 다른 곳에 있는 규암 자갈들

워싱턴 주에는 문헌에 보고됐거나, 우리가 발견한 곳 이외에도 규암 자갈들이 있는 많은 곳들이 있다. 워싱턴 주 동중부의 규암 자갈들과 거력들은 체니(Cheney) 인근의 스포케인(Spokane) 남서쪽 분기 지점의 한 진흙 구덩이에서 발견되었다.[59, 60] 이 규암들은 줄무늬 홈이 있고(striated), 채터마크(chattermarks)를 갖고 있기 때문에, 브레츠는 그것들을 빙하 적용에 의한 것으로 간주했고, 코딜레란 빙상(Cordilleran Ice Sheet)이 스포케인 남쪽까지 확장됐었다고 생각했다. 브레츠는 이 빙력토(till)는 남쪽으로 팔루스 지층 미사(Palouse Formation silts) 아래로 계속됐다고 생각했다. 그러나 그 빙상이 그렇게 멀리 남쪽까지 발달한 적이 없기 때문에, 규암 자갈들은 빙하기 이전에 퇴적된 것이다. 워렌(Warren)은 규암 자갈들이 워싱턴 주 동중부의 팔루스 지층 아래의 현무암 꼭대기에 놓여있음을 확인했다.[61] 우리는 팔루스 지층 실트 아래에 있는 이들 위치의 몇 곳을 조사했고, 둥근 현무암 자갈들을 발견했지만, 자갈에 규암 자갈들은 없었다.

또 다른 위치는 워싱턴 주 북중부의 17번, 174번 고속도로가 만나는 지점 근처인, 워터빌 고원(Waterville Plateau)에 있는 엘렉트릭 시티(Electric City)에서 서쪽으로 약 27km 떨어진, 레이히 코너(Leahy Corner) 주변이다. 그곳에는 현무암의 구석과 틈새에 무작위적으로 모래와 자갈이 남겨져 있는데, 헤르겐로더(Hergenrather)는 지름 3cm 정도의 작은 규암 자갈들을 발견했다. 이 높은 위치는 아마도 미졸라 홍수의 경로에 있었을 것이다.[16] 따라서 규암 쇄설암은 그 홍수에 의해서 이동되었을 가능성이 있다.

규암 자갈들의 한 놀라운 장소는 워싱턴 주 서부의 퓨젯 사운드(Puget Sound) 지역에 있다. 이곳의 자갈들은 한 규암 자갈 내의 한 생흔화석(trace fossil)에 관한 논문에서 기술되어 있는데, 규암 자갈들은 퓨젯 사운드 북서쪽의 산후안 제도(San Juan Islands)의 로페즈 섬(Lopez Island)에서 발견되고 있다는 것이다![62] 그 논문은 계속해서 밝히고 있는데, 규암 자갈들은 흔하지만, 퓨젯 사운드 로우랜드(Puget Sound Lowland)와 산후안 제도의 빙하 퇴적물에서는 소수라는 것이다. 규암 쇄설암은 매우 둥글고, 굵은 자갈 크기가 우세하다. 그들의 기원은 수수께끼이지만, 웨스턴워싱턴 대학의 지질학자인 머스토(Mustoe)는 그것들은 아이다호, 몬태나, 브리티시컬럼비아의 벨트 슈퍼 그룹에서 유래되었으며, 물 흐름에 의해서 이 지역으로 운반된 것이 틀림없다고 결론짓고 있었다. 그 후에 규암 자갈들은 빙하기 동안 그 지역의 빙하 퇴적물에 혼합되었다. 퓨젯 사운드 지역에서 매우 둥근 규암 자갈들이 있는 것은 매우 놀랍고 주목할 만한데,  왜냐하면 가장 가까운 근원이 동쪽으로 약 400km 떨어져 있기 때문이다. 이것은 로키산맥으로부터 규암의 분산이 노스캐스케이드 산맥과 다른 내륙 산맥의 융기에 선행했었다는 것을 암시한다.

우리는 규암 자갈들의 근원과 운반에 대한 머스토의 주장이 정확했었다고 믿는다. 오드(Oard)는 워싱턴 주 에버렛(Everett)에서 북동쪽으로 약 35km 떨어진 곳에 있는 한 빙하 퇴적물을 조사했는데, 그것은 물 흐름에 의해서 침식되고 있는 중이었고, 자갈들은 200개 중에서 단지 1개 정도만 매우 둥근 규암이었다. 그리고 충격흔을 갖고 있는 자갈도 단지 한 개였다. 이것은 빙상은 규암 자갈의 표면에 거의 풍화를 일으키지 않았고, 손상(충돌)을 입히지도 않았음을 나타낸다. 머스토의 훌륭한 논문에서 한 가지 주목해야할 점은, 그러한 많은 비정상적인 규암 자갈들이 많은 지질학자들에 의해서 언급되었지만, 세속적 논문에서 아무도 그것에 대해 발표하지 않았다는 것이다 : “많은 지질학자들이 이러한 굵은 자갈들을 관측했지만, 나는 그것들의 발생에 대해 출판된 논문을 찾을 수 없었다.”[63] 왜 이러한 거대한 홍수를 가리키는 흥미로운 관측들은 출판되지 않는 것인가? 그 이유가 궁금하다.


요약

우리는 로키산맥의 근원 지역 서쪽으로 규암 자갈들이 쌓여있는 많은 지역들을 기록했다. 대규모로 규암 자갈들이 발견되어왔던 오리건 주 중부와 북동부 지역에서 시작했는데, 규암 자갈들은 왈로와 산맥의 정상부와 블루 산맥의 골드힐 정상부에서도 발견되었다. 우리는 댈러스 인근에서부터 태평양까지 컬럼비아강 계곡에 있는 많은 규암 자갈들의 위치를 기록했다. 이 둥근 자갈들은 다양한 비율로 컬럼비아강 현무암 쇄설암과 혼합되어 있었다. 태평양 연안의 노두들은 그들의 가장 가까운 근원으로부터 약 700 km 떨어져 있다.

워싱턴 주 중남부에서 관찰되거나 문헌으로 기술된 규암 자갈들은 흔히 컬럼비아강 현무암 배사구조 위에서 발견된다. 규암 자갈들은 워싱턴 주 남동부에서는 고립되어 있지만, 루이스톤/클락스턴 지역에 광범위하게 분포되어 있다. 또한 규암 자갈들은 헬스 캐니언에도 흩어져 있다. 우리는 워싱턴 주의 다른 곳에서 몇몇 고립된 발견들과, 규암 자갈들이 빙하 파편과 섞여 있는 퓨젯 사운드 지역의 놀라운 위치들을 보고했다. 근원으로부터 동쪽으로 흩어져있는 규암 자갈들과 마찬가지로, 근원의 서쪽에 있는 쇄설암들도 대게 철로 얼룩져 있으며, 충격흔(충돌자국)들을 볼 수 있었다. 압력용해 흔적은 거의 보이지 않았는데, 이것들은 왈로와 산맥에서만 단지 볼 수 있었다.

다음 글에서, 우리는 근원 지역의 서쪽과 동쪽 모두에서 관측되는 둥근 규암 자갈들과 거력들에 대한 의미를 분석할 것이다. 우리는 이 광범위하게 흩어진 자갈들을 설명하고 있는 동일과정설적 시도에서부터 시작할 것이다. 강들은 그렇게 먼 거리로 규암 자갈들과 거력들을 운반할 수 없다. 측정된 거리는 그러한 암석들을 쉽고 빠르게 운반할 수 있었던 노아 홍수의 후퇴기와 더 적합하다. 규암 자갈들의 확산으로부터, 우리는 노아 홍수 후기에 미국 북서부와 캐나다와 인접 지역에서 일어났던 주요한 사건들을 이해할 수 있게 된다. 


Acknowledgments
We are grateful for Brent Carter providing information on the gold mines developed in quartzite gravels in the northern Blue Mountains. We thank Paul Kollas for providing figure 6.
 

Glossary
Andesite : A dark coloured, fine grained volcanic rock with an intermediate (52 to 63%) silica concentration.
Anticline : An inverted U-shaped fold.
ASL : above mean sea level.
Clast : a fragment of rock broken off a larger piece of rock.
Chattermarks : small, curved cracks commonly found in nested arrangements.
Imbricated : the flat surfaces of gravels, pebbles or grains are stacked with their flat surfaces dipping upstream.
Intermediate axis : the axis between the longest and shortest dimensions of a rock that is commonly measured in the field.
Lag : course material dragged along on the bottom of a moving water body, therefore lagging behind the finer material.
Patina : surficial coating due to weathering, commonly comprised of iron oxide.
Percussion marks : circular to semicircular (conchoidal) cracks on the surface of rocks due to impacts.
Pressure solution marks : small circular cavities caused by the pressure of one clast against another, melting the rock at the contacts. Such features are caused by the pressure or weight from rocks or sediments above
Quartzite : a metamorphic rock formed from quartz rich sandstone that has undergone metamorphism.
Striated : approximately parallel groves and scratches cut in a rock. 


Related Articles
Flood transported quartzites—east of the Rocky Mountains
Flood transported quartzites: Part 3—failure of uniformitarian interpretations
Flood transported quartzites: Part 4—diluvial interpretations
Colorado Plateau sandstones derived from the Appalachians?
The remarkable African Planation Surface
Retreating Stage formation of gravel sheets in south-central Asia
How does andesite lava originate in the earth?
Young evidences in an ancient landscape: part 1—the Eastern Structural Front of the Appalachian Mountains
Long-distance transport of sediments


References
1. Oard M.J, Hergenrather J. and Klevberg P., Flood transported quartzites east of the Rocky Mountains, Journal of Creation 19(3):76–90, 2005.
2. Weis, P.L., Gualtieri, J.L. and Cannon, W.F., Mineral Resources of the Eagle Cap Wilderness and Adjacent Areas, Oregon, U.S. Geological Survey Bulletin 1385–E, U.S. Government Printing Office, Washington D.C., 1976.
3. Allen, J.E., The cast of the inverted auriferous paleotorrent—exotic quartzite gravels on Wallowa Mountain peaks, Oregon Geology 53(5):104–107, 1991.
4. Allen, ref. 3, p. 104.
5. Allen, ref. 3, p. 107.
6. Carson, R.J., Where the Rockies meet the Columbia Plateau: geologic field trip from the Walla Walla Valley to the Wallowa Mountains, Oregon, Oregon Geology 63(1), p. 25, 2001.
7. Bretz, J.H., The Satsop Formation of Oregon and Washington, Journal of Geology 25, p. 454, 1917.
8. Warren, C.R., The Hood River conglomerate in Washington, American Journal of Science, 239:106–127, 1941.
9. Warren, C.R., Course of the Columbia River in southern central Washington, American Journal of Science 239:209–232, 1941.
10. Warren, ref. 8, p. 115.
11. Hodge, E.T., Geology of the Lower Columbia River, Geological Society of America Bulletin 49, p. 875, 1938.
12. Warren, ref. 8, p. 123.
13. Warren, ref. 8, p. 110.
14. Kollas, P.J., An analysis of an anomaly, unpublished manuscript, 1994.
15. Tolan, T.L., Beeson, M.H. and Vogt, B.F., Exploring the Neogene history of the Columbia River: discussion and geologic field trip guide to the Columbia River Gorge—Part II. Road log and comments, Oregon Geology 46(9), p. 111, 1984.
16. Oard, M.J., The Lake Missoula Flood Controversy and the Genesis Flood, Creation Research Society Monograph No. 13, Chino Valley, Arizona, 2004.
17. Warren, ref. 8, p. 115.
18. Personal observation.
19. Anderson, J.L., Pomona Member of the Columbia River Basalt Group: an intracanyon flow in the Columbia River Gorge, Oregon, Oregon Geology 42(12):195–199, 1980.
20. Tolan, T.L. and Beeson M.H., Intracanyon flows of the Columbia River Basalt Group in the lower Columbia River gorge and their relationship to the Troutdale Formation, Geological Society of America Bulletin 95, p. 472, 1984. Return to text.
21. Tolan, Beeson and Vogt, Ref. 15, p. 112.
22. Beeson, M.H. and Tolan, T.L., Columbia River Gorge: the geologic evolution of the Columbia River in northwestern Oregon and southwestern Washington; in, Hill, M.L. (eds.), Geological Society of America Centennial Field Guide—Cordilleran Section, Boulder, Colorado, p. 326, 1987.
23. Bretz, ref. 7, p. 453.
24. Lowry, W.D. and Baldwin, E.M., Late Cenozoic geology of the Lower Columbia River Valley, Oregon and Washington, Geological Society of American Bulletin 63, p. 9, 1952.
25. Hodge, ref. 11, pp. 873–877.
26. Bretz, ref. 7, p. 451.
27. Bretz, ref. 7, pp. 446–458.
28. Lowry and Baldwin, ref. 24, p. 11.
29. Bretz, ref. 7, p. 450.
30. Orr, E.L., Orr, W.N. and Baldwin, E.M., Geology of Oregon, Fourth Edition, Kendall/Hunt Publishing Company, Dubuque, Iowa, p. 180, 1992.
31. Lowry and Baldwin, ref. 24, p. 17.
32. Bretz, ref. 7, pp. 447–448.
33. Bretz, J.H., The Late Pleistocene submergence in the Columbia Valley of Oregon and Washington, Journal of Geology 27, p. 491, 1919.
34. Bretz, ref. 7, p. 455.
35. Fecht, K.R., Reidel, S.P. and Tallman, A.M., Paleodrainage of the Columbia River on the Columbia Plateau of Washington state: a summary, RHO-BW-SA-318p, Rockwell Hanford Operations, U.S. Department of Energy, Richland, Washington, p. 34, 1985.
36. Warren, ref. 8, p. 111.
37. Smith, G.A., Sedimentology of proximal to distal volcaniclastics dispersed across an active foldbelt: Ellensburg Formation (late Miocene), central Washington, Sedimentology 35, p. 971, 1988.
38. Warren, ref. 8, p. 120.
39. Schmincke, H.-U., Stratigraphy and petrography of four upper Yakima Basalt flows in south-central Washington, Geological Society of America Bulletin, 78, pp. 1417–1418, 1967.
40. Warren, ref. 8, p. 113.
41. Campbell, N.P., Correlation of Late Cenozoic gravel deposits along the Yakima River drainage from Ellensburg to Richland, Washington, Northwest Science 57(3), p. 192, 1983.
42. Lindsey, K.A., Reidel, S.P., Fecht, K.R., Slate, J.L., Law, A.G. and Tallman, A.M., Geohydrologic setting of the Hanford Site, South-Central Washington; in: Swanson, D.A. and Haugerud, R.A. (Eds.), Geologic Field Trips in the Pacific Northwest, Department of Geological Sciences University of Washington, Seattle, Washington, p. 1C4, 1994.
43. Reidel, S.P., The Saddle Mountains: the evolution of an anticline in the Yakima fold belt, American Journal of Science 284, p. 965, 1984.
44. Bretz, J.H., The Lake Missoula floods and the Channeled Scabland, Journal of Geology 77, p. 536, 1969.
45. Smith, G.A., Neogene synvolcanic and syntectonic sedimentation in central Washington, Geological Society of America Bulletin 100, p. 1489, 1988.
46. Newcomb, R.C., Ringold Formation of Pleistocene age in type locality, the White Bluffs, Washington, American Journal of Science 256:328–340, 1958.
47. Rigby, J.G. and Othberg, K., Reconnaissance surficial geologic mapping of the Late Cenozoic sediments of the Columbia Basin, Washington, Washington Department of Natural Resources, Division of Geology and Earth Resources Open File Report 79–3, Olympia, Washington, pp. 15–17, 1979.
48. Fecht, Riedel and Tallman, ref. 35, p. 32.
49. Mackin, J.H., A Stratigraphic Section in the Yakima Basalt and the Ellensburg Formation in South–Central Washington, Washington State Division of Mines and Geology Report of Investigations No. 19, Olympia, Washington, 1961.
50. Reidel, S.P., Emplacement of Columbia River flood basalt, Journal of Geophysical Research 103(B11), p. 27,398, 1998.
51. Lupher, R.L., Clarkston stage of the Northwest Pleistocene, Journal of Geology 53:337–348, 1945.
52. Pankratz Kuhns, M.J., Late Cenozoic deposits of the Lower Clearwater Valley, Idaho and Washington, M.S. thesis Washington State University, Pullman, Washington, 1980.
53. Webster, G.D.,Pankratz Kuhns, M.J. and Waggoner, G.L., Late Cenozoic gravels in Hells Canyon and the Lewiston Basin, Washington and Idaho; in: Bonnichsen, B. and Breckenridge, R.M., Cenozoic Geology of Idaho, Idaho Department of Lands bureau of Mines and Geology, Moscow, Idaho, pp. 669–683, 1982.
54. Pankratz Kuhns, ref. 52, p. 20.
55. Pankratz Kuhns, ref. 52, p. 23.
56. Kehew, A. E., Drainage history of the Lewiston Basin, Northwest Science 53(4):242–250, 1979.
57. Vallier, T., Islands & Rapids:A Geological Story of Hells Canyon, Confluence Press, Lewiston, Idaho, pp. 33–34, 1998.
58. Vallier, ref. 57, p. 34.
59. Leverett, F., Glacial formation in the western United States, Geological Society of America Bulletin 28:143–144, 1917.
60. Bretz, J.H., Glacial drainage on the Columbia Plateau, Geological Society of America Bulletin 34, pp. 588–589, 1923.
61. Warren, ref. 8, p. 119.
62. Mustoe, G.E., Skolithos in a quartzite cobble from Lopez Island—are Western Washington’s oldest fossils Canadian emigrants, Washington Geology 29(3/4):17–19, 2001.
63. Mustoe, ref. 62, p. 18. 


*참조 : 노아 홍수가 운반했던 막대한 량의 규암 자갈들 Part 1 : 로키산맥 동쪽 지역
http://creation.kr/EvidenceofFlood/?idx=5897494&bmode=view

노아 홍수가 운반했던 막대한 량의 규암 자갈들 - Part 4 : 홍수 모델은 동일과정설적 수수께끼들을 쉽게 설명한다.
http://creation.kr/Sediments/?idx=1288599&bmode=view

노아 홍수 후퇴기에 형성된 아시아 중남부의 판상 자갈층 : 홍수/홍수 후 경계는 신생대 후기일 가능성이 높다.
http://creation.kr/EvidenceofFlood/?idx=1288475&bmode=view

나바호 사암층의 출처로서 침식된 애팔래치아 산맥의 규산쇄설물
http://creation.kr/Sediments/?idx=1288599&bmode=view

창세기 대홍수의 격변을 증언하는 결정적 물증! : 스페인 바르셀로나 몬세라트 암반의 절규
http://creation.kr/EvidenceofFlood/?idx=1288486&bmode=view

대륙을 가로질러 운반된 모래들 : 창세기 홍수의 지질학적 증거들 4
http://creation.kr/Sediments/?idx=1288628&bmode=view

수천 km의 장거리로 운반된 퇴적물
http://creation.kr/EvidenceofFlood/?idx=5027215&bmode=view

콜로라도 고원의 사암은 애팔래치아 산맥에서 유래했는가?
http://creation.kr/Sediments/?idx=1288685&bmode=view

엄청난 량의 워퍼 모래는 전 지구적 홍수를 가리킨다.
http://creation.kr/Sediments/?idx=1288671&bmode=view

엄청난 량의 워퍼 모래는 전 지구적 홍수를 가리킨다. 2 : 광대한 노플렛 사암층은 또 하나의 워퍼 모래이다.
http://creation.kr/Sediments/?idx=1288695&bmode=view

노아 홍수의 후퇴기에 대륙에서 일어났던 막대한 침식
http://creation.kr/EvidenceofFlood/?idx=5808930&bmode=view

대륙에 발생되어 있는 대규모의 거대한 침식은 대홍수가 휩쓸고 간 증거이다.
http://creation.kr/Sediments/?idx=1288667&bmode=view

대륙 해안의 거대한 급경사면들은 노아 홍수의 물러가던 물에 의해 형성되었다.
http://creation.kr/EvidenceofFlood/?idx=1288481&bmode=view

대륙 지표면의 침식은 노아 홍수/홍수 후 경계를 신생대 후기로 위치시킨다.
http://creation.kr/EvidenceofFlood/?idx=1288476&bmode=view

호주 캔버라 지역에서 제거된 300m 두께의 페름기 지층 : 물러가던 노아 홍수 물에 의한 막대한 침식 사례
http://creation.kr/EvidenceofFlood/?idx=4866220&bmode=view

노아 홍수의 물은 대륙에서 어떻게 물러갔는가?
http://creation.kr/EvidenceofFlood/?idx=1288472&bmode=view

강이 산을 자르고 지나갈 수 있는가? : 노아 홍수의 후퇴하는 물로 파여진 수극들
http://creation.kr/Sediments/?idx=1288676&bmode=view

수극과 풍극은 노아 홍수 후퇴기 동안에 파여졌다.
http://creation.kr/EvidenceofFlood/?idx=2094916&bmode=view

지형학은 노아 홍수의 풍부한 증거들을 제공한다. : 산, 평탄면, 도상구릉, 표석, 수극, 해저협곡의 기원
http://creation.kr/EvidenceofFlood/?idx=1288470&bmode=view

도상구릉 : 대륙에서 빠르게 물러갔던 대홍수의 증거
http://creation.kr/Sediments/?idx=1757347&bmode=view

악마의 탑(데블스타워)과 성경적 해석 : 거대한 현무암 기둥들은 성경적 시간틀과 모순되는가?
http://creation.kr/Sediments/?idx=1288580&bmode=view

콜롬비아 과타페 바위의 형성과 노아의 홍수
http://creation.kr/Sediments/?idx=4954669&bmode=view

레드 뷰트 : 대홍수의 잔존물
http://creation.kr/Sediments/?idx=1288617&bmode=view

미국 몬태나 산맥에서 발견되는 노아 홍수의 증거 : 산을 관통하여 흐르는 강(수극)과 산꼭대기의 퇴적층 잔해
http://creation.kr/Sediments/?idx=1288691&bmode=view

구글 어스는 애팔래치아 산맥이 대홍수로 침식되었음을 보여준다.
http://creation.kr/EvidenceofFlood/?idx=5015217&bmode=view

후퇴하는 홍수물에 의해 파여진 호주 시드니 지역 : 수극으로 불려지는 협곡들은 노아 홍수를 증거한다.
http://creation.kr/Sediments/?idx=1288649&bmode=view

호주 핀크 강의 경로(수극)는 노아 홍수의 증거를 제공한다.
http://creation.kr/EvidenceofFlood/?idx=4839651&bmode=view

호주 헤비트리 갭(수극)은 노아 홍수에 의한 엄청난 침식을 증거한다.
http://creation.kr/EvidenceofFlood/?idx=4879515&bmode=view

창세기 홍수의 강력한 증거인 평탄한 지표면
http://creation.kr/Sediments/?idx=1288666&bmode=view

전 지구적 홍수를 가리키는 아프리카의 평탄면
http://creation.kr/EvidenceofFlood/?idx=1288473&bmode=view

동일과정설의 수수께끼인 산꼭대기의 평탄면
http://creation.kr/Sediments/?idx=1288689&bmode=view

노아 홍수의 증거 : 캐나다의 놀라운 평탄면
http://creation.kr/EvidenceofFlood/?idx=5853890&bmode=view

남극 빙상 아래에서 발견된 평탄면
http://creation.kr/EvidenceofFlood/?idx=3870071&bmode=view

전 지구적 홍수의 증거들로 가득한 이 세계
http://creation.kr/EvidenceofFlood/?idx=1288477&bmode=view

그랜드 캐니언에서 전 지구적 홍수의 10가지 증거들
http://creation.kr/EvidenceofFlood/?idx=1288480&bmode=view

그랜드 캐니언의 형성 기원에 대한 “물러가는 홍수 시나리오” 1
http://creation.kr/Sediments/?idx=1288680&bmode=view

그랜드 캐니언의 형성 기원에 대한 “물러가는 홍수 시나리오” 2
http://creation.kr/Sediments/?idx=1288681&bmode=view

그랜드 캐니언의 구불구불한 협곡(또는 사행천)은 노아 홍수를 부정하는가? : 후퇴하는 노아 홍수의 물로 설명되는 말굽협곡.
http://creation.kr/Sediments/?idx=1288677&bmode=view

노아의 대홍수 동안에 계곡과 캐년은 어떻게 형성되었나?
http://creation.kr/EvidenceofFlood/?idx=1288487&bmode=view

그랜드 캐니언보다 큰 해저협곡들은 물러가던 노아 홍수의 물에 의해 파여졌다.
http://creation.kr/EvidenceofFlood#2954870

큰 깊음의 샘들, 노아 홍수, 그리고 거대층연속체들
http://creation.kr/EvidenceofFlood/?idx=1288468&bmode=view

퇴적층에 기초한 해수면 곡선 : 3개 대륙에서 관측되는 동일한 퇴적 패턴은 한 번의 전 지구적 홍수를 증거한다.
http://creation.kr/EvidenceofFlood/?idx=1757330&bmode=view

아프리카와 북미 대륙에 서로 유사한 거대한 퇴적지층들 : 한 번의 전 지구적 홍수에 대한 강력한 증거
http://creation.kr/HotIssues/?idx=1288466&bmode=view

유럽 대륙의 층서학은 전 지구적 홍수를 지지한다.
http://creation.kr/EvidenceofFlood/?idx=2816478&bmode=view

셰일오일과 셰일가스가 존재하는 이유는? : 광대한 셰일 층들은 전 지구적 홍수를 가리키고 있다.
http://creation.kr/EvidenceofFlood/?idx=1288281&bmode=view

석유, 셰일오일, 천연가스의 기원과 최근의 전 지구적 홍수.
http://creation.kr/EvidenceofFlood/?idx=1288282&bmode=view

석탄 : 전 지구적 대홍수의 기념물
http://creation.kr/Sediments/?idx=1288657&bmode=view

전 지구적 대홍수, 격변적 판구조론, 그리고 지구의 역사
http://creation.kr/EvidenceofFlood/?idx=1288483&bmode=view

황토(뢰스)의 기원과 노아홍수, 그리고 한 번의 빙하기
http://creation.kr/EvidenceofFlood/?idx=1288471&bmode=view

거대층연속체들과 전 지구적 홍수
http://creation.kr/Sediments/?idx=1288670&bmode=view

오래된 연대 상징물의 가면을 벗기다 1, 2 : 현대 지질학의 탄생지 식카 포인트
http://creation.kr/Geology/?idx=1290510&bmode=view

http://creation.kr/Geology/?idx=1290511&bmode=view

크리스천들은 왜 한 번의 전 지구적인 대홍수를 믿어야 하는가?
http://creation.kr/EvidenceofFlood/?idx=1288394&bmode=view

지구의 나이 논쟁에 있어서 열쇠 : 노아 홍수는 장구한 시간과 양립될 수 없다
http://creation.kr/BiblicalChronology/?idx=1289277&bmode=view

노아의 홍수에 관한 16개의 질문과 답 (FAQ)
http://creation.kr/EvidenceofFlood/?idx=1288384&bmode=view


▶ 압도적인 노아 홍수의 지질학적 증거들 (주제별 자료실)
http://creation.kr/Series/?idx=1833879&bmode=view

▶ Global Flood (CMI)
https://creation.com/topics/global-flood


출처 : Journal of Creation 20(2):71–81, August 2006
주소 : https://creation.com/flood-transported-quartzites-part-2west-of-the-rocky-mountains

번역 : 미디어위원회




서울특별시 종로구 창경궁로26길 28-3

대표전화 02-419-6465  /  팩스 02-451-0130  /  desk@creation.kr

고유번호 : 219-82-00916             Copyright ⓒ 한국창조과학회

상호명 : (주)창조과학미디어  /  대표자 : 박영민

사업자번호 : 120-87-70892

통신판매업신고 : 제 2018-서울중구-0764 호

주소 : 서울특별시 종로구 창경궁로26길 28-5

대표전화 : 02-419-6484

개인정보책임자 : 김광