빙하기와 창세기 홍수

빙하기와 창세기 홍수

(The Ice Age and the Genesis Flood)

by Michael J. Oard, Ph.D. 


       빙하기(ice age)의 기원은 동일과정설을 믿는 과학자들에게는 매우 골치 아픈 일이 되어왔다. 빙하기를 위해서는 시원한 여름(cooler summers)들과 막대한 강설량(copious snowfall)이 필요하지만, 그들은 서로 반대 관계에 있다. 왜냐하면 시원한 공기는 건조하기 때문이다. 저하된 기온이 대기 순환에 변화를 일으켜  필요한 습기를 제공할 것 같지는 않다. 그 결과  빙하기의 기원에 관한 60 여개 이상의 이론들이 제안되었다. 찰스워스(Charlesworth)는 말했다[1] :

”홍적세(Pleistocene) 현상은 희박한 가능성을 가진 이론에서부터 상호 모순되고 명백히 부적절한 이론들까지 가지각색의 이론들을 만들어 내었다.”

동일과정설에 의한 빙하기는 기상학적으로는 불가능한 것처럼 보인다. 캐나다 북부에서 필요한 온도 하강은 적설(snow cover)에 대한 매우 복잡한 에너지 균형 모델에 의해 확립되어 왔다. 여름들은 오늘날 보다 10-12℃ 더 시원했어야만 했고, 강설량은 정상적 겨울의 2 배 정도는 되었어야만 했다.[2]

최근까지 밀란코비치 메커니즘(Milankovitch mechanism) 또는 구 천문학상 이론(old astronomical theory)은 이 문제에 대한 대안으로 제안되어 왔었다. 컴퓨터 기후 시뮬레이션에 의하면, 그것은 빙하기 또는 적어도 빙하기/간빙기 동요(glacial/interglacial fluctuations)를 시발할 수도 있었음을 보여주었다. 그러나 면밀한 연구 결과들은 이것을 지지하지 않는다. 천문학상 이론은 지구 공전궤도 기하학에서의 주기적 변동에 기인한 태양 복사선(solar radiation)의 작은 변화에 기초하고 있다. 그러나 요동(oscillations)이 심해 코어(deep-sea cores)에 산소 동위원소 변동(oxygen isotope fluctuations)들과 상호 관계가 있다는 것이 통계학적으로 알려지기 전까지, 그것은 너무도 약해서 빙하기의 원인이 될 수 없는 것으로 기상학자들에 의해서 추정되어 왔었다. 정확한 관계들은 아직도 논란의 여지가 있지만, 산소 동위원소 변동의 주기는 주로 빙하 얼음의 부피와 관련 있는 것으로 믿어지고 있고, 부분적으로 해양 고온도(ocean paleotemperature)와도 관련이 있는 것으로 믿어지고 있다. 코아들에 대한 분석으로부터, 두드러졌던 시기는 10,000년 주기의 지구 이심률(eccentricity)과 관련이 있었다. 그러나 이것은 태양 복사선을 기껏해야 0.17%를 변화시킨다.[3] 이것은 매우 미미한 영향이다. 다른 많은 심각한 문제들이 천문학적 이론을 괴롭히고 있다.[4, 5] 비록 여러 모델들이 원인적 가설들을 시험해 볼 수 있지만, ”충분히 발전되지도 못했고, 기후적 복원을 위해 필요한 정보들을 알지 못하고 있다”고 브라이슨(Bryson)은 말했다.[6]


홍수 후 모델 (A Post-Flood Model)

창세기 대홍수에 뒤이은 기후 변화는 빙하기를 초래한 격변적인 메커니즘을 제공했다. 그 홍수는 거대한 지각판들의 움직임과 격렬한 화산 분출을 동반한 사건이었다. 엄청난 양의 화산성 연무질(volcanic aerosols)들은 홍수에 뒤이어 대기 중에 남아 있게 되었고, 이것은 태양복사선을 우주로 반사시켜 지구 표면에 상당한 온도 하강을 가져왔다. 홍수 후의 많은 화산 활동 때문에(이것은 홍적세 퇴적물들이 가리키고 있다), 화산 연무질은 홍수 이후에도 수백 년 동안 지구 대기 중에 풍부하게 존재했을 것이다.[7] 습기(moisture)들은 홍수 이후 훨씬 따뜻해진 바다에서의 강력한 증발로 인해 충분히 공급되었을 것이다. 따뜻한 해양은 홍수 이전의 따뜻한 기후와 모든 ”큰 깊음의 샘들”(창세기 7:11)이 터지며 쏟아져 나온 뜨거운 지하수의 분출 결과이다. 더해진 물의 양은 오늘날보다 낮았던 홍수 이전의 산들을 모두 덮을 만큼 많았음에 틀림없다.

해양에서의 증발은 공기가 얼마나 시원한지, 그리고 얼마나 건조한지, 그리고 공기가 얼마나 불안정하며, 바람이 얼마나 빠르게 부는지에 따라서 좌우된다.[8] 간접적으로 해수의 증발은 해수면의 온도에 비례한다. 상대습도가 50%이고 대기와 바다의 온도 차이 10도가 난다면, 해수 표면 온도가 0도 일 때 보다 30도 일 때가 7배 정도 증발이 더 잘 된다. 그러므로 증발이 가장 잘 일어나는 지역은 위도가 높으며 북반구 대륙의 동쪽 해안을 벗어난 곳이 될 수 있다. 북아메리카의 북동쪽 지역을 주목해보면, 시원한 대지와 따뜻한 바다의 조합은 온도풍(thermal wind) 방정식에 의해서 동쪽 해안선을 따라 평행하게 강력한 바람과 주요 폭풍의 길이 될 수 있다.[9] 오늘날의 동북풍(Northeasters)과 유사하게, 연이은 폭풍들이 동부 해안선 근처에서 발달되어 대륙들에 불어왔을 것이다. 한번 지구 표면에 눈이 덮이면, 더욱 많은 태양열이 우주로 반사되어 지표면의 냉각을 강화시키고, 보상적으로 화산 폭발들은 줄어들었을 것이다.

빙상(ice sheet)은 많은 습기의 공급이 이루어지면서 길게 자라날 것이고, 습기의 공급은 바다의 따뜻함에 의존한다. 그러므로 얼음이 최고 부피로 도달하는 시간은 바다의 냉각 시간에 좌우될 것이다. 이것은 홍수 후 기후에 대한 합리적인 가정들과 처음과 마지막의 평균 바다온도를 가지고 해양에 대한 열평형 방정식으로부터 알아낼 수 있다. 그러나 바다가 잃어버린 열은 대기에 더해지게 될 것이고, 이것은 시원한 여름과 따뜻한 겨울과 함께 바다의 냉각 속도를 감소시킬 것이다. 또한 최대 얼음 부피에 도달하는 시간은 홍수 후 대기의 열평형도 고려해야만 한다. 이것은 화산 활동의 격렬함 정도에 강하게 의존한다. 화산 폭발의 범위들과 평형방정식의 조건에서 가능한 변화들을 고려하여 볼 때, 빙하의 부피가 최고에 도달하는 시간은 홍수 후 250년~1300년인 것으로 추정되고 있다.[10]

빙하 부피가 최대일 때 얼음의 평균 깊이는 중위도와 고위도에 따뜻한 바다로부터의 전체 증발량과 저위도로부터 습기의 운송에 비례한다. 겨울 폭풍에서 대부분의 눈(snow)은 폭풍의 더 추운 부분에서 내리기 때문에, 차가운 대륙에 내리는 강설량은 바다에 내리는 강설량에 2배가 되는 것으로 추정되고 있다. 빙하가 없는 육지에서 재증발된 습기의 일부는 결국 빙상에 눈으로서 내리게 된다. 그러나 이 효과는 여름에 땅 위를 흐르는 빗물(runoff)에 의해 대부분 균형이 맞춰질 것이다. 얼음의 평균 깊이는 동일과정론자들의 평가의 대략 반 정도로 계산되었다. 사실 동일과정론자들의 평가는 알려져 있지 않다. 브룸(Bloom)은 ”불행하게도, 그 두께에 대한 사실들은 거의 알려져 있지 않다. ...우리는 유추와 이론에 의지해야 한다”고 말했었다.[11]

막대한 수분들의 공급처가 사라지고 나면, 중위도에서 한 빙상이 녹는데 걸리는 시간은 놀라울 정도로 짧다. 그것은 눈과 얼음이 덮였던 부분에 대한 에너지 균형에 의해 결정된다.[12] 여러 부가적인 요인들이 얼음의 용해를 증진시킬 수 있다. 빙하의 갈라진 틈(crevasse)은 표면적을 증가시켜 줌으로써 태양열의 흡수를 돕는다.[13] 기후는 빙상의 경계를 따르는 경향이 있는 강한 먼지 폭풍들과 함께 현재보다 더욱 차갑고 건조했을 것이다. 과거 빙상의 남쪽과 주변 내에 확장되어 있는 황토층(loess sheets)은 이것을 증명한다. 빙하 위에 내려앉은 먼지는 태양빛의 흡수를 증가시켜 얼음의 용해를 매우 증가시켰을 것이다. 일본에 있는 만년설로 뒤덮인 한 산은, 그 표면에 4000ppm의 오염된 먼지가 내려앉은 후, 태양 복사선의 85%를 흡수하는 것이 관측되었다.[14]


한 번의 빙하기

지구과학자들은 심해 코어의 산소동위원소 변동에 의거해서, 신생대 말 동안에 규칙이고 연속적인 여러 번의 빙하기들이 존재했었다고(아마도 30번 이상) 믿고 있다.[15]  그러나 해양에서의 결과들은 많은 어려움들을 가지고 있으며, 오랫동안 견지해 오던 4 번의 빙하기와 상반된다. 20세기 초 이전에 빙하기의 횟수에 대한 많은 논란이 있었다. 어떤 과학자들은 한 번의 빙하기를 믿었지만, 퇴적물은 복잡했고, 비빙하성 퇴적물(non-glacial deposits)들에 의해서 구분되는 1번에서 4번, 또는 더 많을 수도 있는 빙력토 층(till sheets)들이 있었다는 증거들을 가지고 있었다. 4번의 빙하기는 알프스에서 발견된 사력층 단구(gravel terraces)들에 의해서 주로 확립되었고, 토양층위학(soil stratigraphy)에 의해서 보강되었다. 그때 이후 빙하의 움직임과 침전물에 대해 많은 것들이 알려지게 되었다.

오늘날 알프스 단구(Alps terraces)들은 ”그 자체가 광범위한 기후적 변화를 가리키는 것이 아니라, 반복적인 구조적 융기 사이클(tectonic uplift cycles)의 결과”[16]라는 견해가 우세하다. 빙력토 층들 사이의 여러 풍화된 ‘간빙기 토양(interglacial soils)‘들은 복잡하고, 항상 꼭대기에 유기적 수평층을 잃어버린 채 발견되고 있기 때문에, 그것들이 진정한 토양이었는지는 알기 어렵다.[17] 게다가 현대의 토양 형성율은 알려져 있지 않다. 그리고 온난화 정도, 습도, 시기 등과 같은 많은 복합적인 요인들에 의존하고 있다.[18] 그러므로 빙하기의 횟수는 아직도 공개된 질문으로 남아있는 것이다.

빙하기가 오직 한번 있었다는 강력한 암시들이 있다. 앞에서 논의하였던 것처럼, 빙하기가 필요로 하는 조건들은 매우 엄격하다. 한 번보다 더 많은 빙하기들이 고려될 때, 문제는 너무 커져서 불가능하게 된다. 실제적으로 빙하기 침전물들의 대부분은 마지막 빙하기의 것이며, 그리고 이들 침전물들도 내륙지역에서는 매우 얇으며, 주변부(periphery)에서도 두껍지 않다. 빙력토(till)는 간혹 빠르게 퇴적될 수도 있는데, 특히  종퇴석(end moraines)에서 그러하다. 따라서 빙력토의 주된 특성들은 한 번의 빙하기를 찬성한다. 홍적세(Pleistocene) 화석들은 빙하가 있는 지역에서는 매우 드문데, 만약 여러 번의 간빙기가 있었다면, 이것은 매우 이상한 일이다. 실제적으로 모든 대대적 동물들의 멸종은 마지막 빙하기 이후에 일어났다. 만약 한 번 이상의 빙하기들이 있었다면, 이것은 하나의 어려운 문제가 된다.

한 번의 역동적인 빙하기는 커다란 요동(fluctuations, 수면이 규칙적 혹은 주기적으로 상승 하강하는 현상)과 해일(surges)들에 기인한 것으로 주변부에 있는 빙력토의 특징들을 설명할 수 있다.[19] 유기적 잔존물(organic remains)들은 이들 요동에 의해서 갇힐 수 있었다.[20] 커다란 요동은 화산 폭발들에 의존해서 변하기 쉬운 대륙 냉각(continental cooling)에 의해 원인될 수 있다. 덧붙여서 대부분의 눈과 얼음은 주 폭풍 경로에 가장 가까운 주변부에 축적되었을 것이다. 가장자리에서의 커다란 표면 경사와 따뜻한 기저부 온도는 빠른 빙하의 움직임에 이바지하는 것이다.[21]

결론적으로, 빙하기의 미스터리는 창세기 홍수의 결과로서 한 번의 격변적인 빙하기에 의해서 가장 잘 설명 될 수 있는 것이다.



REFERENCES
1 Charlesworth, J.K., 1957, The Quaternary Era, Vol. 2, London, Edward Arnold, p. 1532.
2 Williams, L.D., 1979, 'An Energy Balance Model of Potential Glacierization of Northern Canada,' Arctic and Alpine Research, v. 11, n. 4, pp. 443-456.
3. Fong, P., 1982, 'Latent Heat of Melting and Its Importance for Glaciation Cycles,' Climatic Change, v. 4, p. 199.
4 Oard, M.J., 1984, 'Ice Ages: The Mystery Solved? Part 2: The Manipulation of Deep-Sea Cores,'Creation Research Society Quarterly, v. 21, n. 3, pp. 125-137.
5 Oard, M.J., 1985, 'Ice Ages: The mystery Solved? Part 3: Paleomagnetic Stratigraphy and Data Manipulation,'Creation Research Society Quarterly, v. 21, n. 4, pp. 170-181.
6 Bryson, R.A., 1985, 'On Climatic Analogs in Paleoclimatic Reconstruction,' Quaternary Research, v. 23, n. 3, p. 275.
7 Charlesworth, Op. Cit., p. 601.
8 Bunker, A.F., 1976, 'A Computation of Surface Energy Flux and Annual Air-Sea Interaction Cycles of the North Atlantic Ocean,' Monthly Weather Review, v. 104, n. 9, p. 1122.
9 Holton, J.R., 1972, An Introduction to Dynamic Meteorology, New York, Academic Press, pp. 48-51.
10 Oard, M.D., 'An Ice Age Within the Biblical Time Frame,' Proceedings of the First International Conference on Creationism, Pittsburgh (in press).
11 Bloom, A.L., 1971, 'Glacial-Eustatic and Isostatic Controls of Sea Level,' in K.K. Turekian, ed., Late Cenozoic Glacial Ages, New Haven, Yale University Press, p. 367.
12 Patterson, W.S.B., 1969, The Physics of Glaciers, New York, Pergamon, pp. 45-62.
13 Hughes, T., 1986, 'The Jakobshanvs Effect:' Geophysical Research Letters, v. 13, n. 1, pp. 46-48.
14 Warren, S.G. and W.J. Wiscombe, 1980, 'A Model for the Spectral Albedo of Snow. II. Snow Containing Atmospheric Aerosols,' Journal of the Atmospheric Sciences, v. 37, n. 12, p. 2736.
15 Kennett, J.P. 1982, Marine Geology, New Jersey, Prentice-Hall, p. 747.
16 Eyles, N., W.R. Dearman and T.D. Douglas, 1983, 'Glacial Landsystems in Britain and North America' in N. Eyles, ed., Glacial Geology, New York, Pergamon, p. 217.
17 Valentine, K. and J. Dalrymple, 1976, 'Quarternary Buried Paleosols: A Critical Review,' Quarternary Research, v. 6, n. 2, pp. 209-222.
18 Boardman, J., 1985, 'Comparison of Soils in Midwestern United States and Western Europe with the Interglacial Record,' Quaternary Research, v. 23, n. 1, pp. 62-75.
19 Paul, M.A., 1983, 'The Supraglacial Landsystem,' in N. Eyles, ed., Glacial Geology, New York, Pergamon, pp. 71-90.
20 Eyles, Dearman and Douglas, Op. Cit., p. 222.
21 Patterson, Op. Cit., p. 63-167.

* Mr. Oard is a meteorologist with the U.S. Weather Bureau, Montana.

 

*The extinction of the woolly mammoth: was it a quick freeze?
http://creationontheweb.com/images/pdfs/tj/j15_2/j15_2_50-52.pdf

Loess problems
http://creationontheweb.com/images/pdfs/tj/j21_2/j21_2_16-19.pdf


번역 - 미디어위원회

링크 - https://www.icr.org/article/ice-age-genesis-flood/

출처 - ICR, 1987. 6. 1.



서울특별시 종로구 창경궁로26길 28-3

대표전화 02-419-6465  /  팩스 02-451-0130  /  desk@creation.kr

고유번호 : 219-82-00916             Copyright ⓒ 한국창조과학회

상호명 : (주)창조과학미디어  /  대표자 : 박영민

사업자번호 : 120-87-70892

통신판매업신고 : 제 2021-서울종로-1605 호

주소 : 서울특별시 종로구 창경궁로26길 28-5

대표전화 : 02-419-6484

개인정보책임자 : 김광