정자에서 DNA가 포장되는 방법
: 무성생식에서 유성생식의 진화는 실패하고 있다.
(How DNA Is Packaged in Sperm Cells
Part III: Sperm Design vs Evolution)
by Jerry Bergman, PhD
정자가 진화했다는 증거는 존재하지 않는다. 불과 몇 달 전에 상상했던 것보다도, 정자 세포는 훨씬 더 복잡하다.
유성생식(sexual reproduction)에서 수컷의 씨인 정자(sperm)와 암컷의 씨인 난자(ovum)는 모두 필요하다. 이들 세포를 생식자(gametes, 배우자)라고 부른다. 진화론에 의하면, 모든 생물과 장기들은 진화로 생겨났다고 추정하고 있기 때문에, 정자도 진화로 생겨났다.
정자의 진화에 대한 논문들을 컴퓨터로 검색해보면, 고환에서 정자 발달에 관한 많은 논문들이 있지만, 정자가 원시적인 정자 전구물질로부터 진화했다는 논문은 거의 없다. ‘정자 세포의 기원과 진화에 관하여’라는 제목의 한 논문은[1] 정자의 진화적 기원을 알아내는 데에 실패하고 있음을 보여주고 있었다.
정자 세포는 거의 350년 전에 안토니 반 레벤후크(Antonie van Leuwenhoke)와 조안 햄(Johan Ham)에 의해 처음 관찰된 이래로, 생물학자들의 호기심을 불러일으켰다. 이 '미소동물(animalcules)'의 발견은 정자세포 생물학(sperm biology)의 분야를 시작시켰고, 그후 이 작고 고도로 전문화된 세포에 대한 3세기 반 동안의 탐구는 생식과 수정에 대한 우리의 이해에 혁명을 일으켰다. 동물계 전체에서 정자들의 형태와 행동의 놀라운 다양성이 관찰되었고, 정자가 발달하고 성숙하며, 마침내 난자를 찾고 수정하는 그들의 놀라운 여정에서 일어나는 분자적 및 생리적 과정의 복잡성은 오늘날까지 생물학자들에게 호기심을 불러일으키고 영감을 주고 있다.[2]
매년 약 250편의 논문들이 정자들의 경쟁에 관한 주제로 발표되고 있음에도 불구하고, 피셔(Fisher)의 보고서에 정자가 아닌 것으로부터 정자가 진화했다는 것을 설명하려는 어떠한 아이디어도 포함되어 있지 않았다.[3]
무성생식에서 유성생식으로 진화? : 어떻게?
무성생식(asexual reproduction)이 어떻게 유성생식(sexual reproduction)으로 진화했는지는 생물 진화론에서 중요한 부분이지만, 아직도 해결되지 않고 있다.[4] 생식자(gametes, 생식세포), 정자, 난자는 어떻게 진화되었는가? 인터넷 검색으로 찾아본 글들은 대체적으로 이 주제를 무시하고 있다. 피셔는 "진화생물학의 중심적 미스터리 중 하나는 왜 수컷과 암컷의 생식자가 따로 존재하는가?"라는 것임을 인정하고 있었다.[5]
그녀는 정자 경쟁(sperm competition), 또는 정자 경쟁을 일으킨 것의 전구체가 "생식자 이형(gamete dimorphism)의 진화를 이끌었다"고 말한다.[6] 이러한 관찰은 생식자 이형(정자와 난자가 진화했다는 의미)과 이 둘이 하나로 결합되는 수단이 존재할 때까지, 유성생식이 일어날 수 없다는 사실을 무시하고 있었다. "생식자 이형의 주요 결과는 정자 경쟁인데, 여기서 작은 생식자가 더 큰 생식자과 경쟁한다"라는 주장은 생식자가 아닌 것에서 생식자로의 진화를 말하는 것이 아니다. 그 주장은 어떤 구조와 미세조정의 악화가 일어난 것을 줄이는(제거하는), 생물에서 일어나고 있는 자연선택의 주 기능에 대한 한 예시일 뿐이다.[7]
DNA를 포장하고, 재포장하기 위해 필요한 것들
진화론자들은 정자 발달 과정에서 근본적인 형태 변화를 일으키기 위해서는 부계 염색체(paternal chromosomes)가 반드시 필요하다는 사실을 설명해야 한다. 수정 전 정자에서 부계 염색체의 압축(compaction)은 정자의 유체역학적 성능 향상과 정자 머리의 부계 유전체의 무결성 보존을 위해 필요하다.
.DNA를 조립하는데 있어서 히스톤의 기능을 설명하는 도표. <From Wikimedia Commons>.
초압축(ultracompaction)은 DNA가 차지하는 공간을 20~200배로 줄이고, 난자를 향해 이동하는 동안 복제를 방지하기 위해 사용된다. 정자 DNA의 이러한 극도의 초압축 과정은 "유전체 전체에서 히스톤(histones)을 프로타민(protamines)으로 대체하는 것과 관련이 있지만, 염색질 조직(chromatin organization)에서 이러한 급진적인 변화의 실제 역할은 커다란 수수께끼로 남아 있다."[8] 이 단계의 중요성은 "정자 염색질에서 전체적으로 히스톤을 프로타민으로 대체하는 것은 곤충을 포함하여 동물계에 널리 퍼져 있다"라는 사실로 인해서 알 수 있다.[9] 이 중요한 역할에서 히스톤의 제거는 부계 염색체를 보호하고, 수정 시 조기 분열로부터 부계 염색체를 보호하는 것이 포함된다.[10]
프로타민은 정자의 핵심 주요 단백질로서, 정자 머리의 핵에서 DNA 압축을 일으키는 DNA 접합제(DNA binder) 역할을 하며, 정자가 기능하는데 필요한 염색질(chromatin) 형성에 필수적이다. 이것은 "프로타민 결핍은 정자 형성에 심각한 장애를 유발하여 남성 불임에 영향을 미친다"는 초기 연구 결과를 통해서 확인되었다. 또한 프로타민의 발현 장애는 정자의 수, 운동성 감소, 형태학적 이상을 초래했다."[11]
비록 "히스톤이 수정 능력에 영향을 미침 없이 정자에 남아 있다 하더라도, 히스톤을 제거하고 프로타민으로 대체하는 이 과정이 필요한 이유는 "수정 시 수컷 염색체는 암컷의 감수분열의 진행을 조절하는 모계 요소에 의해서 엉뚱한 것(이상한 형태)으로 인식되기 때문이다. 이러한 인식은 해로운 조기 분열과 수컷 염색체의 조기 소실을 초래한다." 즉, 이 전체 과정이 ‘한 요소도 제거할 수 없는 복잡성(irreducible complexity)’의 또 다른 사례인 것이다. 이것은 난자에서 수컷 염색체를 보호하는데 있어서 정자 염색질의 역할이 중요함을 보여주는 것이다. 히스톤 제거 과정의 세부 사항에는 다음과 같은 효과가 포함된다 :
히스톤 제거 과정은 돌연변이체 부계 소실(mutant paternal loss, pal) 효과가 있으며, 정자 염색질은 정자 생존력을 손상시키지 않고 생식선 히스톤 H3 및 H4를 유전체에 넓게 보유하고 있다. 그러나 수정 후, 돌연변이가 일어난 정자 염색체는 난자의 염색체 운반 복합체(chromosomal passenger complex, CPC)의 표적이 되고, 여성 감수분열 II와 동시에 치명적인 조기 분열에 관여한다. pal은... H2A-H2B 이합체(dimers)를 제거한 후, 정자 DNA에서 (H3-H4)2 사합체(tetramers)를 제거하는 데 특별히 필요한 한 단백질을 암호화한다. 따라서 우리의 연구는 곤충 정자 염색질로부터 히스톤 제거의 예상치 못한 역할을 밝혀내었다. 이것은 암컷의 감수분열(meiosis) 동안 남성 생식핵(pronucleus)의 완전성을 보호한다.[12]
후성유전학적 역할
게다가, 이제 우리는 "특화된 정자 DNA 포장(sperm DNA packaging)은 또한 중요한 수정 후 기능... 모계 염색체와 구별되는 부계 염색체의 후성유전학적 식별(epigenetic identification) 기능을 제공한다. 이러한 후성유전학적 구별이 없다면, 부계 DNA는 최초의 접합체 세포분열 이전에 부서진다." [13] 이 주요 압축 단계의 한 결과는 생물학적 적격성(competency)을 상실한다는 것이다. 결과적으로, 생물학적 적격성은 정자로 회복되어야만 한다. 이것은 부계 DNA 포장을 재건하는(reestablishing) 것을 필요로 한다.
요약
정자에 대한 이 연구의 전체 과정은 정자의 설계에 작은 변화가 생겨도 다음 세대에 정자의 기능과 번식 능력에 치명적인 영향을 미칠 수 있다는 사실을 잘 보여준다. 그리고 위에서 설명한 고도로 복잡한 설계가 확립되어있고 기능하기 전까지, 정자는 생식 기능을 수행할 수 없다. 이것은 정자의 설계가 복잡할 뿐만 아니라, 한 요소도 제거할 수 없을 정도로 복잡하다는 사실을 다시 한번 보여주는 것이다. 또한 정자가 어떤 무성생식 시스템에서 무작위적 과정을 통해 결코 진화될 수 없었다는 또 다른 증거가 되고 있는 것이다.
버그만 박사의 이전 시리즈 글들을 참조하라(번역되어 있음) :
1부: 정자 세포에서 발견된 복잡한 설계 (2023. 11. 15).
https://creation.kr/LIfe/?idx=17305362&bmode=view
2부: 정자의 초고도 복잡성은 설계를 가리킨다. (2023. 11. 22).
https://creation.kr/LIfe/?idx=17082628&bmode=view
.제리 버그만(Jerry Bergman) 박사의 책, ‘진화의 세 기둥이 붕괴되다(The Three Pillars of Evolution Demolished)’. 2022. Westbow Press: Bloomington, IN (a division of Thomas Nelson & Zondervan).
References
[1] Fisher, Heidi, et al. “On the Origin and Evolution of Sperm Cells.” Cells 12(1):159, January 2023.
[2] Fisher, et al., 2023.
[3] Simmons, L.W., and N. Wedell. “Fifty years of sperm competition: The structure of a scientific revolution.” Philosophical Transactions of the Royal Society. B Biological Science. 375: 20200060, 19 October 2020.
[4] Smith, F. LaGard. Darwin’s Secret Sex Problem: Exposing Evolution’s Fatal Flaw–The Origin of Sex. WestBow Division of Thomas Nelson and Zondervan, Bloomington, IN, 2018.
[5] Fisher, et al., 2023, p. 2.
[6] Fisher, et al., 2023, p. 2.
[7] Bergman, Jerry. The Three Pillars of Evolution Demolished: Why Darwin Was Wrong. WestBow Division of Thomas Nelson and Zondervan, Bloomington, IN, 2022.
[8] Lopez, Bianca, et al. “Unequal impacts.” Science 382(6671):659-661, 2023.
[9] Dubruille, Raphaëlle, et al. “Histone removal in sperm protects paternal chromosomes from premature division at fertilization.” Science 328(6671):725-731 10 November 2023.
[10] Dubruille, et al., 2023.
[11] Akmal, Muslim, et al. 2016. “The important role of protamine in spermatogenesis and quality of sperm: A mini review.” Asian Pacific Journal of Reproduction 5(5):357-360, September 2016.
[12] Dubruille, et al., 2023.
[13] Levine, Mia. “A case of mistaken epigenetic identity. The specialized packaging of sperm DNA preserves genome stability in the fruit fly zygote” Science 382(6671):643-644, https://www.science.org/doi/full/10.1126/science.adl0365, 9 November 2023.
*참조 : 진화론자들은 암수 성에 의한 유성생식이 어떻게 진화했는지 아직도 모른다.
https://creation.kr/Variation/?idx=1290472&bmode=view
동물들이 유성생식을 사용하는 이유는?
https://creation.kr/Mutation/?idx=1289851&bmode=view
지구의 가장 초기 동물생태계는 복잡했고 성 번식을 하였다.
https://creation.kr/Circulation/?idx=1294938&bmode=view
호박 속 백악기 꽃에 진화는 없었다. : 1억 년(?) 전의 수정 방식은 오늘날과 동일했다.
https://creation.kr/Circulation/?idx=1295027&bmode=view
현화식물의 출현 연대가 1억 년이나 더 내려갔다? : 2억4천3백만 년 전 지층에서 발견된 꽃식물의 화분
https://creation.kr/Circulation/?idx=1295021&bmode=view
곤충은 가장 초기의 현화식물을 수분했다
https://creation.kr/LivingFossils/?idx=16570533&bmode=view
정자와 난자의 수정 현상
https://creation.kr/Columns/?idx=1849782&bmode=view
한치 오차도 없는 수정
https://creation.kr/Plants/?idx=1291324&bmode=view
진화론자들에게 보내는 15개의 질문
https://creation.kr/Debate/?idx=1293672&bmode=view
▶ 진화론의 추가적 문제점들 - 유성생식
https://creation.kr/Topic401/?q=YToxOntzOjEyOiJrZXl3b3JkX3R5cGUiO3M6MzoiYWxsIjt9&bmode=view&idx=6760154&t=board
▶ 생명체의 초고도 복잡성
https://creation.kr/Topic101/?idx=6405658&bmode=view
▶ 한 요소도 제거 불가능한 복잡성
https://creation.kr/Topic101/?q=YToxOntzOjEyOiJrZXl3b3JkX3R5cGUiO3M6MzoiYWxsIjt9&bmode=view&idx=6405309&t=board
▶ DNA의 초고도 복잡성
https://creation.kr/Topic101/?q=YToxOntzOjEyOiJrZXl3b3JkX3R5cGUiO3M6MzoiYWxsIjt9&bmode=view&idx=6405637&t=board
▶ DNA와 RNA가 우연히?
https://creation.kr/Topic101/?q=YToxOntzOjEyOiJrZXl3b3JkX3R5cGUiO3M6MzoiYWxsIjt9&bmode=view&idx=6405610&t=board
▶ 단백질과 효소들이 모두 우연히?
https://creation.kr/Topic101/?q=YToxOntzOjEyOiJrZXl3b3JkX3R5cGUiO3M6MzoiYWxsIjt9&bmode=view&idx=6405405&t=board
▶ 유전정보가 우연히?
https://creation.kr/Topic101/?idx=6405597&bmode=view
▶ 새로 밝혀진 후성유전학
https://creation.kr/Topic401/?q=YToxOntzOjEyOiJrZXl3b3JkX3R5cGUiO3M6MzoiYWxsIjt9&bmode=view&idx=6776421&t=board
▶ 유전학, 유전체 분석
https://creation.kr/Topic102/?q=YToxOntzOjEyOiJrZXl3b3JkX3R5cGUiO3M6MzoiYWxsIjt9&bmode=view&idx=6487983&t=board
출처 : CEH, 2023. 11. 28.
주소 : https://crev.info/2023/11/sperm-dna/
번역 : 미디어위원회
정자에서 DNA가 포장되는 방법
: 무성생식에서 유성생식의 진화는 실패하고 있다.
(How DNA Is Packaged in Sperm Cells
Part III: Sperm Design vs Evolution)
by Jerry Bergman, PhD
정자가 진화했다는 증거는 존재하지 않는다. 불과 몇 달 전에 상상했던 것보다도, 정자 세포는 훨씬 더 복잡하다.
유성생식(sexual reproduction)에서 수컷의 씨인 정자(sperm)와 암컷의 씨인 난자(ovum)는 모두 필요하다. 이들 세포를 생식자(gametes, 배우자)라고 부른다. 진화론에 의하면, 모든 생물과 장기들은 진화로 생겨났다고 추정하고 있기 때문에, 정자도 진화로 생겨났다.
정자의 진화에 대한 논문들을 컴퓨터로 검색해보면, 고환에서 정자 발달에 관한 많은 논문들이 있지만, 정자가 원시적인 정자 전구물질로부터 진화했다는 논문은 거의 없다. ‘정자 세포의 기원과 진화에 관하여’라는 제목의 한 논문은[1] 정자의 진화적 기원을 알아내는 데에 실패하고 있음을 보여주고 있었다.
정자 세포는 거의 350년 전에 안토니 반 레벤후크(Antonie van Leuwenhoke)와 조안 햄(Johan Ham)에 의해 처음 관찰된 이래로, 생물학자들의 호기심을 불러일으켰다. 이 '미소동물(animalcules)'의 발견은 정자세포 생물학(sperm biology)의 분야를 시작시켰고, 그후 이 작고 고도로 전문화된 세포에 대한 3세기 반 동안의 탐구는 생식과 수정에 대한 우리의 이해에 혁명을 일으켰다. 동물계 전체에서 정자들의 형태와 행동의 놀라운 다양성이 관찰되었고, 정자가 발달하고 성숙하며, 마침내 난자를 찾고 수정하는 그들의 놀라운 여정에서 일어나는 분자적 및 생리적 과정의 복잡성은 오늘날까지 생물학자들에게 호기심을 불러일으키고 영감을 주고 있다.[2]
매년 약 250편의 논문들이 정자들의 경쟁에 관한 주제로 발표되고 있음에도 불구하고, 피셔(Fisher)의 보고서에 정자가 아닌 것으로부터 정자가 진화했다는 것을 설명하려는 어떠한 아이디어도 포함되어 있지 않았다.[3]
무성생식에서 유성생식으로 진화? : 어떻게?
무성생식(asexual reproduction)이 어떻게 유성생식(sexual reproduction)으로 진화했는지는 생물 진화론에서 중요한 부분이지만, 아직도 해결되지 않고 있다.[4] 생식자(gametes, 생식세포), 정자, 난자는 어떻게 진화되었는가? 인터넷 검색으로 찾아본 글들은 대체적으로 이 주제를 무시하고 있다. 피셔는 "진화생물학의 중심적 미스터리 중 하나는 왜 수컷과 암컷의 생식자가 따로 존재하는가?"라는 것임을 인정하고 있었다.[5]
그녀는 정자 경쟁(sperm competition), 또는 정자 경쟁을 일으킨 것의 전구체가 "생식자 이형(gamete dimorphism)의 진화를 이끌었다"고 말한다.[6] 이러한 관찰은 생식자 이형(정자와 난자가 진화했다는 의미)과 이 둘이 하나로 결합되는 수단이 존재할 때까지, 유성생식이 일어날 수 없다는 사실을 무시하고 있었다. "생식자 이형의 주요 결과는 정자 경쟁인데, 여기서 작은 생식자가 더 큰 생식자과 경쟁한다"라는 주장은 생식자가 아닌 것에서 생식자로의 진화를 말하는 것이 아니다. 그 주장은 어떤 구조와 미세조정의 악화가 일어난 것을 줄이는(제거하는), 생물에서 일어나고 있는 자연선택의 주 기능에 대한 한 예시일 뿐이다.[7]
DNA를 포장하고, 재포장하기 위해 필요한 것들
진화론자들은 정자 발달 과정에서 근본적인 형태 변화를 일으키기 위해서는 부계 염색체(paternal chromosomes)가 반드시 필요하다는 사실을 설명해야 한다. 수정 전 정자에서 부계 염색체의 압축(compaction)은 정자의 유체역학적 성능 향상과 정자 머리의 부계 유전체의 무결성 보존을 위해 필요하다.
.DNA를 조립하는데 있어서 히스톤의 기능을 설명하는 도표. <From Wikimedia Commons>.
초압축(ultracompaction)은 DNA가 차지하는 공간을 20~200배로 줄이고, 난자를 향해 이동하는 동안 복제를 방지하기 위해 사용된다. 정자 DNA의 이러한 극도의 초압축 과정은 "유전체 전체에서 히스톤(histones)을 프로타민(protamines)으로 대체하는 것과 관련이 있지만, 염색질 조직(chromatin organization)에서 이러한 급진적인 변화의 실제 역할은 커다란 수수께끼로 남아 있다."[8] 이 단계의 중요성은 "정자 염색질에서 전체적으로 히스톤을 프로타민으로 대체하는 것은 곤충을 포함하여 동물계에 널리 퍼져 있다"라는 사실로 인해서 알 수 있다.[9] 이 중요한 역할에서 히스톤의 제거는 부계 염색체를 보호하고, 수정 시 조기 분열로부터 부계 염색체를 보호하는 것이 포함된다.[10]
프로타민은 정자의 핵심 주요 단백질로서, 정자 머리의 핵에서 DNA 압축을 일으키는 DNA 접합제(DNA binder) 역할을 하며, 정자가 기능하는데 필요한 염색질(chromatin) 형성에 필수적이다. 이것은 "프로타민 결핍은 정자 형성에 심각한 장애를 유발하여 남성 불임에 영향을 미친다"는 초기 연구 결과를 통해서 확인되었다. 또한 프로타민의 발현 장애는 정자의 수, 운동성 감소, 형태학적 이상을 초래했다."[11]
비록 "히스톤이 수정 능력에 영향을 미침 없이 정자에 남아 있다 하더라도, 히스톤을 제거하고 프로타민으로 대체하는 이 과정이 필요한 이유는 "수정 시 수컷 염색체는 암컷의 감수분열의 진행을 조절하는 모계 요소에 의해서 엉뚱한 것(이상한 형태)으로 인식되기 때문이다. 이러한 인식은 해로운 조기 분열과 수컷 염색체의 조기 소실을 초래한다." 즉, 이 전체 과정이 ‘한 요소도 제거할 수 없는 복잡성(irreducible complexity)’의 또 다른 사례인 것이다. 이것은 난자에서 수컷 염색체를 보호하는데 있어서 정자 염색질의 역할이 중요함을 보여주는 것이다. 히스톤 제거 과정의 세부 사항에는 다음과 같은 효과가 포함된다 :
히스톤 제거 과정은 돌연변이체 부계 소실(mutant paternal loss, pal) 효과가 있으며, 정자 염색질은 정자 생존력을 손상시키지 않고 생식선 히스톤 H3 및 H4를 유전체에 넓게 보유하고 있다. 그러나 수정 후, 돌연변이가 일어난 정자 염색체는 난자의 염색체 운반 복합체(chromosomal passenger complex, CPC)의 표적이 되고, 여성 감수분열 II와 동시에 치명적인 조기 분열에 관여한다. pal은... H2A-H2B 이합체(dimers)를 제거한 후, 정자 DNA에서 (H3-H4)2 사합체(tetramers)를 제거하는 데 특별히 필요한 한 단백질을 암호화한다. 따라서 우리의 연구는 곤충 정자 염색질로부터 히스톤 제거의 예상치 못한 역할을 밝혀내었다. 이것은 암컷의 감수분열(meiosis) 동안 남성 생식핵(pronucleus)의 완전성을 보호한다.[12]
후성유전학적 역할
게다가, 이제 우리는 "특화된 정자 DNA 포장(sperm DNA packaging)은 또한 중요한 수정 후 기능... 모계 염색체와 구별되는 부계 염색체의 후성유전학적 식별(epigenetic identification) 기능을 제공한다. 이러한 후성유전학적 구별이 없다면, 부계 DNA는 최초의 접합체 세포분열 이전에 부서진다." [13] 이 주요 압축 단계의 한 결과는 생물학적 적격성(competency)을 상실한다는 것이다. 결과적으로, 생물학적 적격성은 정자로 회복되어야만 한다. 이것은 부계 DNA 포장을 재건하는(reestablishing) 것을 필요로 한다.
요약
정자에 대한 이 연구의 전체 과정은 정자의 설계에 작은 변화가 생겨도 다음 세대에 정자의 기능과 번식 능력에 치명적인 영향을 미칠 수 있다는 사실을 잘 보여준다. 그리고 위에서 설명한 고도로 복잡한 설계가 확립되어있고 기능하기 전까지, 정자는 생식 기능을 수행할 수 없다. 이것은 정자의 설계가 복잡할 뿐만 아니라, 한 요소도 제거할 수 없을 정도로 복잡하다는 사실을 다시 한번 보여주는 것이다. 또한 정자가 어떤 무성생식 시스템에서 무작위적 과정을 통해 결코 진화될 수 없었다는 또 다른 증거가 되고 있는 것이다.
버그만 박사의 이전 시리즈 글들을 참조하라(번역되어 있음) :
1부: 정자 세포에서 발견된 복잡한 설계 (2023. 11. 15).
https://creation.kr/LIfe/?idx=17305362&bmode=view
2부: 정자의 초고도 복잡성은 설계를 가리킨다. (2023. 11. 22).
https://creation.kr/LIfe/?idx=17082628&bmode=view
.제리 버그만(Jerry Bergman) 박사의 책, ‘진화의 세 기둥이 붕괴되다(The Three Pillars of Evolution Demolished)’. 2022. Westbow Press: Bloomington, IN (a division of Thomas Nelson & Zondervan).
References
[1] Fisher, Heidi, et al. “On the Origin and Evolution of Sperm Cells.” Cells 12(1):159, January 2023.
[2] Fisher, et al., 2023.
[3] Simmons, L.W., and N. Wedell. “Fifty years of sperm competition: The structure of a scientific revolution.” Philosophical Transactions of the Royal Society. B Biological Science. 375: 20200060, 19 October 2020.
[4] Smith, F. LaGard. Darwin’s Secret Sex Problem: Exposing Evolution’s Fatal Flaw–The Origin of Sex. WestBow Division of Thomas Nelson and Zondervan, Bloomington, IN, 2018.
[5] Fisher, et al., 2023, p. 2.
[6] Fisher, et al., 2023, p. 2.
[7] Bergman, Jerry. The Three Pillars of Evolution Demolished: Why Darwin Was Wrong. WestBow Division of Thomas Nelson and Zondervan, Bloomington, IN, 2022.
[8] Lopez, Bianca, et al. “Unequal impacts.” Science 382(6671):659-661, 2023.
[9] Dubruille, Raphaëlle, et al. “Histone removal in sperm protects paternal chromosomes from premature division at fertilization.” Science 328(6671):725-731 10 November 2023.
[10] Dubruille, et al., 2023.
[11] Akmal, Muslim, et al. 2016. “The important role of protamine in spermatogenesis and quality of sperm: A mini review.” Asian Pacific Journal of Reproduction 5(5):357-360, September 2016.
[12] Dubruille, et al., 2023.
[13] Levine, Mia. “A case of mistaken epigenetic identity. The specialized packaging of sperm DNA preserves genome stability in the fruit fly zygote” Science 382(6671):643-644, https://www.science.org/doi/full/10.1126/science.adl0365, 9 November 2023.
*참조 : 진화론자들은 암수 성에 의한 유성생식이 어떻게 진화했는지 아직도 모른다.
https://creation.kr/Variation/?idx=1290472&bmode=view
동물들이 유성생식을 사용하는 이유는?
https://creation.kr/Mutation/?idx=1289851&bmode=view
지구의 가장 초기 동물생태계는 복잡했고 성 번식을 하였다.
https://creation.kr/Circulation/?idx=1294938&bmode=view
호박 속 백악기 꽃에 진화는 없었다. : 1억 년(?) 전의 수정 방식은 오늘날과 동일했다.
https://creation.kr/Circulation/?idx=1295027&bmode=view
현화식물의 출현 연대가 1억 년이나 더 내려갔다? : 2억4천3백만 년 전 지층에서 발견된 꽃식물의 화분
https://creation.kr/Circulation/?idx=1295021&bmode=view
곤충은 가장 초기의 현화식물을 수분했다
https://creation.kr/LivingFossils/?idx=16570533&bmode=view
정자와 난자의 수정 현상
https://creation.kr/Columns/?idx=1849782&bmode=view
한치 오차도 없는 수정
https://creation.kr/Plants/?idx=1291324&bmode=view
진화론자들에게 보내는 15개의 질문
https://creation.kr/Debate/?idx=1293672&bmode=view
▶ 진화론의 추가적 문제점들 - 유성생식
https://creation.kr/Topic401/?q=YToxOntzOjEyOiJrZXl3b3JkX3R5cGUiO3M6MzoiYWxsIjt9&bmode=view&idx=6760154&t=board
▶ 생명체의 초고도 복잡성
https://creation.kr/Topic101/?idx=6405658&bmode=view
▶ 한 요소도 제거 불가능한 복잡성
https://creation.kr/Topic101/?q=YToxOntzOjEyOiJrZXl3b3JkX3R5cGUiO3M6MzoiYWxsIjt9&bmode=view&idx=6405309&t=board
▶ DNA의 초고도 복잡성
https://creation.kr/Topic101/?q=YToxOntzOjEyOiJrZXl3b3JkX3R5cGUiO3M6MzoiYWxsIjt9&bmode=view&idx=6405637&t=board
▶ DNA와 RNA가 우연히?
https://creation.kr/Topic101/?q=YToxOntzOjEyOiJrZXl3b3JkX3R5cGUiO3M6MzoiYWxsIjt9&bmode=view&idx=6405610&t=board
▶ 단백질과 효소들이 모두 우연히?
https://creation.kr/Topic101/?q=YToxOntzOjEyOiJrZXl3b3JkX3R5cGUiO3M6MzoiYWxsIjt9&bmode=view&idx=6405405&t=board
▶ 유전정보가 우연히?
https://creation.kr/Topic101/?idx=6405597&bmode=view
▶ 새로 밝혀진 후성유전학
https://creation.kr/Topic401/?q=YToxOntzOjEyOiJrZXl3b3JkX3R5cGUiO3M6MzoiYWxsIjt9&bmode=view&idx=6776421&t=board
▶ 유전학, 유전체 분석
https://creation.kr/Topic102/?q=YToxOntzOjEyOiJrZXl3b3JkX3R5cGUiO3M6MzoiYWxsIjt9&bmode=view&idx=6487983&t=board
출처 : CEH, 2023. 11. 28.
주소 : https://crev.info/2023/11/sperm-dna/
번역 : 미디어위원회