식물의 후성유전체 연구는 진화론을 부정한다.
: 유전암호의 변경 없이 환경에 적응하는 식물
(Plant Epigenome Research Negates Evolution)
by Jeffrey P. Tomkins Ph.D.
서로 다른 환경에 적응하는 능력을 부여하는 내재적 생물학적 과정에 대한 연구에 있어서, 식물(plants)은 이상적인 시스템을 제공한다. 새로운 몇몇 연구들은 식물이 유전체의 DNA에 태깅(tagging, 화학적 꼬리표 부착)과 변경(modification)과 같은 '후성유전학(epigenetics)'으로 알려진 과정을 통해, 그들의 유전암호의 변경 없이 어떻게 그 일을 수행하는지를 보여주고 있었다.[1] 이러한 결과는 다윈의 패러다임인 점진적 진화를 부정한다는 점에서 중요한 의미를 지닌다.
식물은 환경에 적응하는 수단으로서 자신의 뿌리를 스스로 뽑아서 다른 곳으로 이동할 수 없다. 그들은 근본적으로 그들이 심겨진 환경에 반응해야만 한다. 따라서 식물들은 적응(adaptation)에 관한 내재되어 있는 메커니즘의 연구에 이상적인 생물학적 시스템이 되어 왔다.
최근 발표된 연구에서, 전 세계의 여러 지역에서 수집한 애기장대(Arabidopsis) 식물의 DNA가 조사되었다[1]. 애기장대는 겨자와 같은 잡초 식물로서 식물의 유전학적 연구에 중요한 모델 시스템이 되어 왔다. 과학자들은 DNA 염기서열의 유전적 변이 차이와, 메틸화(methylation)로 불리는 DNA의 화학적 태깅과 관련된 후성적 변경을 조사했다.
바꾸어 말하면, 그 식물은 그들의 유전적 암호에서 서로 매우 유사했다. 왜냐하면 그들은 모두 같은 종(species)이었기 때문이다. 그러나 그들의 후성유전체(epigenomes)는 그 식물이 발견된 다양한 세계의 환경에 따라 매우 달랐다. 이러한 후성적 메틸화에 기초한 유전자 꼬리표(tags)는 유전체 전체에 대해 어떤 유전자의 스위치가 켜지고 꺼졌는가와 직접적인 관련이 있었다.
그 연구를 수행한 솔크 연구소(Salk Institute)의 선임과학자인 조셉 엑커(Joseph Ecker)는 보도 인터뷰에서 ”우리는 세계 각국에서 수집한 식물들을 조사했고, 그들의 후성유전체가 매우 다르다는 것을 발견했다”고 말했다. 그리고 ”이러한 부가적인 다양성은 매우 긴 시간을 요하겠지만, DNA의 어떤 유전적 변화 없이 식물이 다양한 환경에 빠르게 적응하는 길을 만든 것 같다”고 말했다.[2]
이러한 연구는 이전에는 숨겨져 있던 DNA 기초 정보의 층이 어떻게 환경과 조화되어 직접적으로 관여되는지를 보여주는 것이다. 이러한 전체 시나리오는 다윈의 진화론에 매우 심각한 문제가 있음을 보여주는 것이다.
첫째, DNA의 메틸화는 무작위적인 사건이 아니었다. 그것은 유전체 전체를 통해 특정 DNA에 배치된 환경신호에 따라, 메틸 태그(methyl tags)를 부착시키는 분자기계(단백질과 RNAs)들의 복잡한 정렬을 포함하고 있었다.
둘째, 복잡한 세포기계와 인프라 구조가 DNA 태그들을 (환경뿐만 아니라, 그 태그가 부착된 식물세포의 형태에 따라) 해석하기 위해서 필요했다. 놀랍게도 연구자들은 그 태깅(tagging, 꼬리표 부착)이 잎, 화분세포, 씨앗에 따라 다양한 것을 발견했다. 즉, 그 후성적 태깅은 환경신호에 따라 달라질 뿐만 아니라, 또한 세포유형에 따라서도 달라진다는 것이다.
셋째, 식물이 성장하고 씨앗을 만드는 모든 일들을 수행하기 위해서, 새로운 세포를 만들기 위해 복제될 때, 그 화학적 DNA 태그는 DNA와 더불어 정확히 복제되도록 보장되는 시스템상의 또 다른 수준의 복잡성이 필요하다는 것이다. 이것은 특히 생식세포에서 중요한데, 그 결과 다음 세대의 식물이 동일한 적응 시스템을 갖게 되는 것이다.
넷째, 이 매우 복잡한 '전부 아니면 무(all or nothing)' 시스템이 DNA의 돌연변이들을 통해 점진적으로 진화될 확률은 0일 뿐만 아니라, 또한 그것에 작용됐다는 자연선택 아이디어도 심각한 문제점을 가지고 있는 것이다. 만약 식물이 넓은 범위의 적응시스템을 가지고 있다면, 소위 양성의(유익한) DNA 염기서열 돌연변이(예외적으로 거의 나타나지 않음)에 의한 직접적인 선택은 차단되는 것이다. 그렇다면 어떻게 진화가 진행될 수 있었을까?
이 연구를 지지하는 최근의 또 다른 연구는, 어떻게 애기장대 식물이 (넓은 다양성의 DNA 분자에 의해 부분적으로 지시된 복잡한) 유전체의 후성유전학적 변경(modification)에 의해서 열 스트레스(heat stress)에 반응하는지를 보여주었다[3]. 분명히, 환경에 반응하는 유전자 네트워크의 정교하고 시의적절한 조절은 다윈의 진화론으로는 도저히 설명할 수 없는 생물복잡성의 또 다른 면을 보여주는 것이다.
현대 과학의 발전을 통해 밝혀지고 있는 생명체의 놀라운 생명공학 시스템은 이미 수천 년 전의 성경 속에 정확하게 예견되어 있었다. ”창세로부터 그의 보이지 아니하는 것들 곧 그의 영원하신 능력과 신성이 그가 만드신 모든 만물에 분명히 보여 알려졌나니 그러므로 그들이 핑계치 못할지니라” (로마서 1:20).
References
1. Schmitz, R.J. et al. 2013. Patterns of population epigenomic diversity. Nature. 495 (7440): 193-198.
2. Hidden Layer of Genome Unveils How Plants May Adapt to Environments Throughout the World. Salk Institute for Biological Studies - News Release
3. Popova, O.V. et al. 2013. The RdDM Pathway Is Required for Basal Heat Tolerance in Arabidopsis. Molecular Plant. 6 (2): 396-410.
*Dr. Tomkins is Research Associate at the Institute for Creation Research and received his Ph.D. in Genetics from Clemson University.
번역 - 문흥규
링크 - http://www.icr.org/article/7410/
출처 - ICR News, 2013. 4. 24.
식물의 후성유전체 연구는 진화론을 부정한다.
: 유전암호의 변경 없이 환경에 적응하는 식물
(Plant Epigenome Research Negates Evolution)
by Jeffrey P. Tomkins Ph.D.
서로 다른 환경에 적응하는 능력을 부여하는 내재적 생물학적 과정에 대한 연구에 있어서, 식물(plants)은 이상적인 시스템을 제공한다. 새로운 몇몇 연구들은 식물이 유전체의 DNA에 태깅(tagging, 화학적 꼬리표 부착)과 변경(modification)과 같은 '후성유전학(epigenetics)'으로 알려진 과정을 통해, 그들의 유전암호의 변경 없이 어떻게 그 일을 수행하는지를 보여주고 있었다.[1] 이러한 결과는 다윈의 패러다임인 점진적 진화를 부정한다는 점에서 중요한 의미를 지닌다.
식물은 환경에 적응하는 수단으로서 자신의 뿌리를 스스로 뽑아서 다른 곳으로 이동할 수 없다. 그들은 근본적으로 그들이 심겨진 환경에 반응해야만 한다. 따라서 식물들은 적응(adaptation)에 관한 내재되어 있는 메커니즘의 연구에 이상적인 생물학적 시스템이 되어 왔다.
최근 발표된 연구에서, 전 세계의 여러 지역에서 수집한 애기장대(Arabidopsis) 식물의 DNA가 조사되었다[1]. 애기장대는 겨자와 같은 잡초 식물로서 식물의 유전학적 연구에 중요한 모델 시스템이 되어 왔다. 과학자들은 DNA 염기서열의 유전적 변이 차이와, 메틸화(methylation)로 불리는 DNA의 화학적 태깅과 관련된 후성적 변경을 조사했다.
바꾸어 말하면, 그 식물은 그들의 유전적 암호에서 서로 매우 유사했다. 왜냐하면 그들은 모두 같은 종(species)이었기 때문이다. 그러나 그들의 후성유전체(epigenomes)는 그 식물이 발견된 다양한 세계의 환경에 따라 매우 달랐다. 이러한 후성적 메틸화에 기초한 유전자 꼬리표(tags)는 유전체 전체에 대해 어떤 유전자의 스위치가 켜지고 꺼졌는가와 직접적인 관련이 있었다.
그 연구를 수행한 솔크 연구소(Salk Institute)의 선임과학자인 조셉 엑커(Joseph Ecker)는 보도 인터뷰에서 ”우리는 세계 각국에서 수집한 식물들을 조사했고, 그들의 후성유전체가 매우 다르다는 것을 발견했다”고 말했다. 그리고 ”이러한 부가적인 다양성은 매우 긴 시간을 요하겠지만, DNA의 어떤 유전적 변화 없이 식물이 다양한 환경에 빠르게 적응하는 길을 만든 것 같다”고 말했다.[2]
이러한 연구는 이전에는 숨겨져 있던 DNA 기초 정보의 층이 어떻게 환경과 조화되어 직접적으로 관여되는지를 보여주는 것이다. 이러한 전체 시나리오는 다윈의 진화론에 매우 심각한 문제가 있음을 보여주는 것이다.
첫째, DNA의 메틸화는 무작위적인 사건이 아니었다. 그것은 유전체 전체를 통해 특정 DNA에 배치된 환경신호에 따라, 메틸 태그(methyl tags)를 부착시키는 분자기계(단백질과 RNAs)들의 복잡한 정렬을 포함하고 있었다.
둘째, 복잡한 세포기계와 인프라 구조가 DNA 태그들을 (환경뿐만 아니라, 그 태그가 부착된 식물세포의 형태에 따라) 해석하기 위해서 필요했다. 놀랍게도 연구자들은 그 태깅(tagging, 꼬리표 부착)이 잎, 화분세포, 씨앗에 따라 다양한 것을 발견했다. 즉, 그 후성적 태깅은 환경신호에 따라 달라질 뿐만 아니라, 또한 세포유형에 따라서도 달라진다는 것이다.
셋째, 식물이 성장하고 씨앗을 만드는 모든 일들을 수행하기 위해서, 새로운 세포를 만들기 위해 복제될 때, 그 화학적 DNA 태그는 DNA와 더불어 정확히 복제되도록 보장되는 시스템상의 또 다른 수준의 복잡성이 필요하다는 것이다. 이것은 특히 생식세포에서 중요한데, 그 결과 다음 세대의 식물이 동일한 적응 시스템을 갖게 되는 것이다.
넷째, 이 매우 복잡한 '전부 아니면 무(all or nothing)' 시스템이 DNA의 돌연변이들을 통해 점진적으로 진화될 확률은 0일 뿐만 아니라, 또한 그것에 작용됐다는 자연선택 아이디어도 심각한 문제점을 가지고 있는 것이다. 만약 식물이 넓은 범위의 적응시스템을 가지고 있다면, 소위 양성의(유익한) DNA 염기서열 돌연변이(예외적으로 거의 나타나지 않음)에 의한 직접적인 선택은 차단되는 것이다. 그렇다면 어떻게 진화가 진행될 수 있었을까?
이 연구를 지지하는 최근의 또 다른 연구는, 어떻게 애기장대 식물이 (넓은 다양성의 DNA 분자에 의해 부분적으로 지시된 복잡한) 유전체의 후성유전학적 변경(modification)에 의해서 열 스트레스(heat stress)에 반응하는지를 보여주었다[3]. 분명히, 환경에 반응하는 유전자 네트워크의 정교하고 시의적절한 조절은 다윈의 진화론으로는 도저히 설명할 수 없는 생물복잡성의 또 다른 면을 보여주는 것이다.
현대 과학의 발전을 통해 밝혀지고 있는 생명체의 놀라운 생명공학 시스템은 이미 수천 년 전의 성경 속에 정확하게 예견되어 있었다. ”창세로부터 그의 보이지 아니하는 것들 곧 그의 영원하신 능력과 신성이 그가 만드신 모든 만물에 분명히 보여 알려졌나니 그러므로 그들이 핑계치 못할지니라” (로마서 1:20).
References
1. Schmitz, R.J. et al. 2013. Patterns of population epigenomic diversity. Nature. 495 (7440): 193-198.
2. Hidden Layer of Genome Unveils How Plants May Adapt to Environments Throughout the World. Salk Institute for Biological Studies - News Release
3. Popova, O.V. et al. 2013. The RdDM Pathway Is Required for Basal Heat Tolerance in Arabidopsis. Molecular Plant. 6 (2): 396-410.
*Dr. Tomkins is Research Associate at the Institute for Creation Research and received his Ph.D. in Genetics from Clemson University.
번역 - 문흥규
링크 - http://www.icr.org/article/7410/
출처 - ICR News, 2013. 4. 24.