암석 기록에서 드롭스톤이 의미하는 것은? : 드롭스톤은 대홍수와 더 적합하다.

암석 기록에서 드롭스톤이 의미하는 것은? 

: 드롭스톤은 대홍수와 더 적합하다. 

(What is the meaning of dropstones in the rock record?)


      드롭스톤(Dropstones)은 그것이 발견되는 퇴적층의 두께보다 직경이 더 큰(대형) 암석이다. 때때로 미세한 입자(세립질)의 괴상 퇴적암(massive sediments) 내의 커다란 ‘암석’도 드롭스톤으로 간주된다. 드롭스톤은 대개 호수나 대양에 떠다녔던 빙산에 의해서 퇴적물 내로 떨어진 것으로 해석되어 왔다. 이러한 해석은 동일과정설적 시간 틀로 수억 년에서 수십억 년 전에 일어났다는 고대의 빙하기들을 진단하는 세 가지 주된 특성 중 하나로 간주되고 있다.[1] 표석(boulders)이 엽층(thin beds) 내에서 발견될 때, 특히 빙호점토(varve, 호상점토)가 고결된 호상점토암(varvites, 그림 1)으로 가정되고 있는 실트와 점토, 또는 모래와 실트로 구성되어 있는 층 내에서 표석이 발견될 때, 그러한 빙하기 해석은 증명되었거나 적어도 근거가 충분한 것으로 간주되어왔다. 빙호점토는 일 년에 쌓여진 다른 아층(sublayers)들의 짝으로 이루어져 있다고 말해지고 있다.

그림 1. 캐나다 온타리오에 있는 고우간다 지층(Gowganda Formation)의 리듬암(rhythmites) 내 대형 쇄설물. 리듬암은 원거리 저탁암(distal turbidite)으로 간주되고 있다 (캐나다 지질연구소).


빙하가 발생시키지 않은 드롭스톤

드롭스톤은 빙하에 의하지 않고도 발생될 수 있다는 것 또한 잘 알려져 있다.[2] 호수나 대양의 바닥에서 드롭스톤이 만들어질 수 있는 다양한 메커니즘들이 있는데, 그것은 해빙, 물에 떠 있는 해초(kelp), 나무의 그루터기, 위석(stomach stones)을 가지는 헤엄치는 동물 등에 의한 운반, 날아와 가라앉은 돌, 심지어 해변의 표석들을 들어 올려 물 위로 운반했던 물기둥 같은 것들이다.[3] 드롭스톤의 다양한 퇴적 메커니즘 때문에, 드롭스톤을 고기후의 지시자(indicators)로 사용하는 것은 매우 불확실한 것이다. 그러므로 분명히 드롭스톤을 가지고 고대 빙하기를 진단해서는 안 되는 것이다.


드롭스톤을 가지고 있는 퇴적암이 오랜 세월에 걸쳐 쌓여졌다고 가정되고 있지만, 때때로 이들 퇴적암은 실제로 집단류(mass flow, 괴류)의 산물이고, 사실 암석도 측면에서 운반되어온 것이다. 세립질의 퇴적암 내에서 드롭스톤으로 여겨졌던 많은 예들이 저탁류(turbidity currents), 즉 바닥에 바짝 붙어 빠르게 움직이며 흘러가는 퇴적물 흐름의 측면으로 운반되어 쌓여진 돌들로 재해석되었다. 한 예로 캐나다 온타리오 주에 22억 년 되었다는 유명한 고우간다 지층(Gowganda Formation)의 얇은 띠 내의 암석들을 들 수 있다(그림 1). 이 층은 먼 거리를 이동했던 저탁류의 산물인 원거리 저탁암 내의 암석으로 재해석되기 전까지, 전형적인 드롭스톤 호상점토암으로 간주됐었다.[4] 원거리 저탁암은 빙호점토로 보일 수 있다.


빙하기 드롭스톤으로 추정되었던 것이 집단류에 의해서 측면에서 놓여진 것으로 재해석된 다른 예들도 있다. 나미비아(Namibia)의 신원생대(Neoproterozoic) 퇴적암은 호상점토암 내에 드롭스톤이 있다는 것 때문에 빙하기로 해석됐었다. 하지만, 전체 퇴적암은 집단류의 산물로 재해석되었다.[5, 6] 호주 서부의 캐닝 분지(Canning Basin) 내의 드롭스톤이 있어서 빙하기 퇴적암으로 여겨져 왔던 것은 수중에서 일어났던 집단류의 산물로 재정의 되었다.[7] 추정됐던 드롭스톤들은 집단류에 의해서 측면으로부터 퇴적된 것들로 보인다.


'열대 환경'에서 드롭스톤의 의미

물론 퇴적층 내에는 드롭스톤이 놓여지게 된 환경에 대한 증거가 없거나, 애매모호한 경우들이 많다. 그러한 사례들은 열대환경으로 여겨지고 있는 곳에서 발견될 때, 특히 그러하다. 그것은 빙하에 의해서 만들어졌다고 볼 수 없다. 오랜 기간에 걸쳐 서서히 퇴적된 것처럼 보이는 퇴적암도 어쩌면 수평적 집단류에 의해서 빠르게 퇴적되었을 가능성이 높다.

그림 2. 미국 사우스 다코다의 블랙힐스, 나무뿌리에 들어있는 암석들.


세립질의 퇴적층 내에 이러한 수많은 드롭스톤들이 동일과정설적 지질주상도의 중생대 퇴적암 내에서 발견된다. 중생대는 지구상에서 매우 따뜻했던 시기로 가정되어 왔다. 그 시기에 고위도 상에는 빙상(ice sheets)이 전혀 없었거나, 어떤 산에 만년설이 있었다고 하더라도 극히 적었을 것으로 보고 있다.[8] 그러한 추론은 극지방에서 온난한 기후의 동식물군 화석들의 발견에 근거한 것이다. 화석 증거들에도 불구하고, 일부 연구자들은 중생대 동안에 남극 지역에 빙하작용이 있었을 것으로 상정하고 있다. 아마도 그 연구자들은 드롭스톤이 빙하에 의해서 떠내려 온 것으로 믿고, 그것을 설명하기 위해서일 것이다. 최근의 한 연구는 초온실(supergreenhouse) 상태의 백악기 기간 중에, ‘짧은’ 20만 년 동안 현재 빙상의 반 정도의 크기로 남극 지역에 빙상이 만들어졌을 것으로 주장했다![9, 10]  
 
중생대 ‘드롭스톤’의 한 가지 예로서, 호주 남부의 백악기 사암층 내에서 1m(B-axis) 짜리 규암표석(quartzite boulders)들이 발견되었는데, 이것의 기원을 놓고 100여 년 동안 논쟁이 있어왔다.[11] 그 표석에는 화석들이 많이 들어있었고, 고생대 데본기로 추정되고 있었기 때문에, 그것은 서쪽과 북서쪽으로 적어도 1,000km를 운반되어 온 것으로 여겨지고 있었다. 몇몇 암석들은 빙하작용의 흔적으로 추정되는, 각진 면과 줄무늬가 나 있었다. 그러나 그것들은 집단류와 다른 지질작용에 의해서도 만들어질 수 있다.[12] 연구자들은 그 표석들이 집단류에 의해서 마지막으로 운반되었다는 것을 인정하고 있음에도 불구하고, 그 표석들은 ‘페름기 빙하작용’에 의해서 먼 거리로 운반되었고, 현재 그것들이 발견되는 백악기 퇴적암 내의 위치로 집단류에 의해 재퇴적되었다고 주장했다.


또 다른 예는 시베리아 북동쪽의 (진화론적 시간 틀로) 쥐라기 및 백악기 지층에서 볼 수 있다. 희귀한 온대식물 화석들을 가지고 있는 세립질의 해양 퇴적물 내에 흩어져 있는 암석들은 집단이동(mass movement)에 기인한 것이다.


스페인의 중생대 중기 지층에 대한 최근의 보고에 따르면, 그 지층은 열대 호수 환경으로 가정됐었으나, 드롭스톤이 세립질 석회암에서 나타난다는 것이 밝혀지면서 논란이 되었다.[14] 당연시 여겨졌던 열대 환경과, 암석에 빙하의 특징 부족 때문에, 연구자들은 빙상으로부터 빙산이 운반되어왔다는 주장을 기각시켰다. 그들은 또한 세립질의 석회암 때문에 집단류를 무시했다. 그래서 그들은 유체역학적 모순(paradox)에 빠지게 되었다 :

”저에너지 상태를 가리키는 평범한 미크라이트(micrite, 세립질 석회암) 내에서 대형 암석(드롭스톤)의 발생은, 모퇴적물(host sediment) 내에 대형 암석이 수직이거나 비스듬하게 놓여짐에 의해서만 해결될 수 있기 때문에, 유체역학적 모순이 생겨나는 것이다.”[15] 

모순을 풀기 위해서, 연구자들은 나무뿌리 내 암석의 운반을 선택했다. 그들은 빙하에 의한 운반이 아니었다면, 빙하 환경을 추론하는 것은 타당하지 않다고 인정했다.

”만약 나무에 의한 운반이 가능성 있는 드롭스톱의 메커니즘이라면, 결과적으로 이동되어온 드롭스톤의 발생으로 호수 환경에서 빙하환경의 존재를 추론하는 것은 타당한 추론이 아니다.”[15]

드롭스톤이 들어있는 호상퇴적암(varvites)이 열대 자메이카의 (동일과정설적 지질주상도 상으로) 에오세와 플라이오세 지층에서 또한 보고되었다.[16] 직경이 최대 1.5m에 달하는 따로 떨어져 있는 표석들이 에오세 지층 내의 얇은 층으로 되어 있는 저탁암 내에서 발견되었다. 두 개의 커다란 실트암(siltstone) 바위들은 플라이오세의 점토질 석회암인 이회암(marlstone) 내에서 발견되었다. 빙산과 해빙에 의한 운반은 적용될 수 없었다. 그들은 나무에 의한 운반도 배제시켰다. 왜냐하면 나무화석들이 없었기 때문이었다. (대홍수 모델에서는 그러한 유추를 하지 않는다). 그래서 그들은 바위가 들어있는 세립질 또는 얇은 층의 퇴적암이 집단류에 의해서 퇴적되었다고 결론지었다.
 

드롭스톤은 대홍수로 잘 설명이 된다.

동일과정설적 과학자들은 그들이 서서히 퇴적된 것으로 믿고 있는 퇴적암 내에서, 때때로 커다란 암석의 발견으로 인해 유체역학적 모순에 직면하곤 한다. 그러나 창조과학자들은 대홍수 동안의 빠른 퇴적작용을 믿고 있기 때문에, 그것을 설명할 수 있는 더 많은 옵션들을 가지고 있다. 대홍수에 의해 부유하는 켈프(kelp, 해초의 일종), 갈기갈기 찢긴 나무뿌리(그림 2) 등에 부착, 다른 ‘고에너지’ 메커니즘들로 인해 더 많은 진짜 드롭스톤들이 예상될 수 있다. 많은 드롭스톤들이 대홍수물 위로 떠다녔던 통나무 매트(floating log mat)로부터 떨어졌을 것이다.


수많은 집단류가 대홍수 동안에 일어났을 것이고, 그것들은 흔히 측면에서 이동해 와서 놓여지게 된 ‘드롭스톤’들을 포함하게 됐을 것이다. 퇴적작용은 대홍수 동안에 광범위하게 일어났고, 물의 흐름도 때로 강력했을 것이다. 또한 갓 퇴적된 퇴적물에 대규모의 해저 사태(submarine sliding)가 일어났다는 증거의 발견도 예상될 것이다. 그래서 대홍수 동안에 집단류(mass flows)들은 수백 m 두께로, 수만 ㎢를 뒤덮으며, 엄청난 부피의 퇴적물을 빠른 속도로 이동시켰을 것이다. 그러한 집단류 내에 들어있던 암석들은 먼 거리로 운반될 수 있었다. 그 암석들은 세립질의 퇴적물 내에 자리 잡을 수 있었으나, 그 흐름이 너무나 걸쭉해서 유체의 바닥에 가라앉기 전에 놓여졌을 것이다. 그러한 암석들은 세립질의 퇴적물이나 얇은 층의 퇴적암 내에 결국 ‘부유’된 상태로 남아있게 됐을 것이다. 그것들은 드롭스톤의 모습을 가지고 있지만, 집단류의 산물이라는 모습은 가지고 있지 않을 수 있다. 이것은 아마도 위의 스페인 사례의 경우일 것이다. 왜냐하면, 암석들이 8,000m의 퇴적암 내에서 흩어진 채로 발견되고 있기 때문이다![17]


‘초기 백악기’의 클로벌리 지층(Cloverly Formation) 내의 세립질 퇴적암 내에서 발견되는 위석(gastroliths)들은 집단류 내에서 200~400km 운반되어온 물질로 해석되고 있다.[18, 19] 이것은 대홍수 때 퇴적된 물질의 또 다른 예일 수 있다. 수십억 마리의 노틸로이드(nautiloids, ‘부유하는 암석’과 유사하게)가 그랜드 캐니언의 레드월 지층(Redwall Formation)과 그 주변 바닥에 2m 두께의 퇴적층 내에서 대대적으로 매몰되어 있다.[20]


드롭스톤은 대홍수 패러다임에서는 문제가 되지 않는다. 그러나 동일과정설적 모델 내에서는 때때로 수수께끼가 되고 있는 것이다.



Related Articles
Kelp could have produced abundant dropstones during the Flood


Further Reading
Ice Age and Mammoths Questions and Answers


References
1.Oard, M.J., Ancient Ice Ages or Gigantic Submarine Landslides? Creation Research Society Monograph No. 6, Creation Research Society, Chino Valley, AZ, pp. 57–67, 1997.
2.Bennett, M.R., Doyle, P. and Mather, A.E., Dropstones: their origin and significance, Palaeogeography, Palaeoclimatology, Palaeoecology121:331–339, 1996.
3.de Long, W.P., de Lange, P.J. and Moon, V.G., Boulder transport by waterspouts: an example from Aorangi Island, New Zealand, Marine Geology 230:115–125, 2006.
4.Miall, AD, Sedimentation on an early Proterozoic continental margin under glacial influence: the Gowganda Formation (Huronian) Elliot Lake area, Ontario, Canada, Sedimentology 32:763–788, 1985.
5.Eyles, N. and Januszczak, N., Syntectonic subaqueous mass flows of the Neoproterozoic Otavi Group, Namibia: where is the evidence of global glaciation? Basin Research 19:179–198, 2007.
6.Oard, M.J., An ancient ‘ice age’ deposit attributed to subaqueous mass flow—again!Journal of Creation 22(2):36–39, 2008.
7.Eyles, C.H. and Eyles, N., Subaqueous mass flow origin for Lower Permian diamictites and associated facies of the Grand Group, Barbwire Terrace, Canning Basin, Western Australia, Sedimentology 47:343–356, 2000.
8.Huber, B.T., Macleod, K.G. and Wing, S.L., Warm Climates in Earth History, Cambridge University Press, London, UK, pp. 239–318, 2000.
9.Bornemann, A. et al., Isotopic evidence for glaciation during the Cretaceous supergreenhouse, Science 319:189–192, 2008.
10.Kerr, R.A., More climate wackiness in the Cretaceous supergreenhouse? Science 319:145, 2008.
11.Flint, R.B., Ambrose, G.J. and Campbell, K.S.W., Fossiliferous Lower Devonian boulders in Cretaceous sediments of the Great Australian Basin, Transactions of the Royal Society of South Australia 104(3):57–65, 1980.
12.Oard, ref. 1, pp. 41–47.
13.Chumakov, N.M. and Frakes, L.A., Mode of origin of dispersed clasts in Jurassic shales, southern part of the Yana-Kolmya fold belt, North East Asia, Palaeogeography, Palaeoclimatology, Palaeoecology 128:77–85, 1997.
14.Doublet, S. and Garcia, J.-P., The significance of dropstones in a tropical lacustrine setting, eastern Cameros Basin (Late Jurassic–Early Cretaceous, Spain), Sedimentary Geology 163:293–309, 2004.
15.Doublet and Garcia, ref. 14, p. 293.
16.Donovan, S.K. and Pickereill, R.K., Dropstones: their origin and significance: a comment, Palaeogeography, Palaeoclimatology, Palaeoecology131:175–178, 1997.
17.Doublet and Garcia, ref. 14, p. 294.
18.Zaleha, M.J. and Wiesemann, S.A., Hyperconcentrated flows and gastroliths: sedimentology of diamictites and wackes of the Upper Cloverly Formation, Lower Cretaceous, Wyoming, U.S.A., Journal of Sedimentary Research75(1):43–54, 2005.
19.Oard, M.J., ‘Gastroliths’ deposited by mass flow, Journal of Creation20(2):18–19, 2006.
20.Austin, S.A., Nautiloid mass kill and burial event, Redwall Limestone (Lower Mississippian), Grand Canyon region, Arizona and Nevada; in: Ivey Jr, R.L. (Ed.), Fifth International Conference on Creationism, technical symposium sessions, Creation Science Fellowship, Pittsburgh, PA, pp. 55–99, 2003.


*참조 : 년층(Varves, 호상점토층)

https://creation.kr/Sediments/?idx=1288576&bmode=view

그린 리버 지층 : 얇은 호상점토층(varves)들은 오래된 지구의 증거가 아니다.

https://creation.kr/Sediments/?idx=1288519&bmode=view

셰일층 내 엽층들의 기원 : 얇은 층리들은 흐르는 물에서 빠르게 생성될 수 있었다.

https://creation.kr/Geology/?idx=4123919&bmode=view

진흙 퇴적 실험은 오랜 지질학적 신념을 뒤엎어버렸다. : 이암 퇴적층들의 이전 모든 해석에 대한 근본적인 재평가가 요구된다.

http://creation.kr/Geology/?idx=1290536&bmode=view

퇴적층의 엽층에 관한 실험

http://creation.kr/Sediments/?idx=1288534&bmode=view

의심되고 있는 지질학적 법칙들 : 인공수로 실험에서 빠르게 형성된 층리와 엽층들 - Guy Berthault의 웹사이트 탐방

http://creation.kr/Geology/?idx=1290515&bmode=view


번역 - 미디어위원회

링크 - http://creation.com/dropstones 

출처 - Journal of Creation 22(3):3–5, December 2008

구분 - 4

옛 주소 - http://www.kacr.or.kr/library/itemview.asp?no=6215

참고 : 4352|4214|3111|2083|1071|4490|5717|5400|4471|4195|6006|6030|6076|4198



서울특별시 종로구 창경궁로26길 28-3

대표전화 02-419-6465  /  팩스 02-451-0130  /  desk@creation.kr

고유번호 : 219-82-00916             Copyright ⓒ 한국창조과학회

상호명 : (주)창조과학미디어  /  대표자 : 박영민

사업자번호 : 120-87-70892

통신판매업신고 : 제 2021-서울종로-1605 호

주소 : 서울특별시 종로구 창경궁로26길 28-5

대표전화 : 02-419-6484

개인정보책임자 : 김광