동물의 성체 크기와 장기 비율이 일정한 이유는?
(Adult Body Proportions Partly Solved)
Jerry Bergman
한 생물 종의 성체 크기가 일정한 이유는 무엇인가? 새롭게 밝혀진 유전적 과정은 신체 크기와 장기 크기의 비례성이 어떻게 작동되는지에 빛을 비춰주고 있다.
이것은 흥미로운 미스터리이다: 어떻게 같은 생물 종의 성체 구성원들 사이에 크기 차이가 거의 없는 것일까?
개(dogs)와 같은 동물에서 종들 사이의 엄청난 크기 차이를 생각해 보라. 푸들(Poodle)과 마스티프(Mastiff)는 몸체 크기가 매우 차이가 난다. 그러나 각 개의 장기들은 그들의 크기에 정확히 비례한다. 작은 푸들은 그 크기와 몸무게에 맞는 완벽한 크기의 장기와 신체 부분들을 갖고 있고, 커다란 마스티프 또한 그 크기에 맞는 장기와 신체 부분을 갖고 있다. 무엇인가가 이 결과들을 통제하고 있다.[1] 2022년 6월 7일 독일의 프리드리히 미셔 생의학 연구소(Friedrich Miescher Institute for Biomedical Research)의 보도자료는[2] 이 미스터리를 다음과 같이 다루고 있었다 :
최종 몸체와 장기 크기의 발달에 대한 조절은 정확한 비율의 기능적인 성체를 형성하는데 기초가 된다. 지난 20년 동안의 연구는 최종 신체 크기에 영향을 미치는 긴 유전자 목록과 신호 경로들을 밝혀냈다. 그러나 신체 크기와 장기 크기는 궁극적으로 모든 생물들의 공통적 특징이며, 신체 및 장기 크기를 조절하기 위해서 많은 유전자들과 경로들이 생리학적으로 어떻게 기능하는지는 대부분 알려져 있지 않다.
베른 대학(University of Bern)의 벤자민 토빈(Benjamin Towbin)과 연구자들은 신체 내 장기들의 크기와 비율을 조절하기 위해서, 많은 유전자들과 경로들이 어떻게 기능하는지를 알아내려고 시도했다. 태어났을 때 푸들과 마스티프는 거의 같은 크기였지만, 성체의 결과는 극적으로 달랐다. 보통 "같은 종의 성체는 보통 크기가 거의 동일하다."[2] 위, 심장, 간, 귀, 혀는 성장을 진행하다가, 언제 성장을 멈추어야 하는지를 알고 있다.

.개의 품종 간 크기 차이는 매우 크다.
인공사육자들은 큰 개와 작은 개를 교배시켜 중간 크기의 새끼를 낳을 수 있고, 중간 종은 자신의 성체 크기에 적합한 장기를 갖게 된다. 닥스훈트(Dachshund)는 전형적인 작은 개의 크기와 비슷하지만, 매우 짧은 다리를 갖고 있다. 닥스훈트와 푸들이 섞이면, 닥스훈트의 다리 크기는 유지되지만, 푸들의 털이 지배적 형질이 된다. 유명한 멘델의 완두콩 연구 이래로, 과학자들은 형질이 유전자에 의해 결정된다는 것을 알게 되었다.
토빈은 다세포동물들이 어떻게 몸의 크기와 비례하여 말단 장기의 크기가 조절되는지 거의 알려져 있지 않다는 것을 인정하고 있었다. 그는 그러한 일이 어떻게 일어나는지 궁금해 한 후, 새로운 가설을 실험했다.
동일한 생물 종(species)의 개체들은 같은 크기로 자란다. 발달 과정과 환경 조건의 내재적 무작위성이 개체들의 성장 속도에 상당한 차이를 만들어내기 때문에, 크기의 이러한 균일성은 놀랍다. 게다가, 동물의 성장은 종종 기하급수적으로 일어나기 때문에, 심지어 성장의 작은 차이도 크기의 큰 차이로 증폭될 수 있다. 그럼에도 불구하고, 어떻게 동물들은 정확한 크기에 도달하는 것일까?[3]
이것이 토빈이 수행한 연구의 초점이었고, 그의 발견은 많은 사람들을 놀라게 했다.
이전에 생각했던 것보다 훨씬 더 복잡한 메커니즘
저속촬영(time-lapse photography) 기법을 사용하여, 토빈의 연구팀은 수백 마리의 회충(roundworms)의 발달 과정을 관찰했다. 그들은 내재된 메커니즘이 존재한다는 것을 발견했다.
그 메커니즘은 동물 개체들 사이의 신체 크기의 균일성을 보장한다. 그것은 크기 자체를 측정하는 것으로 보이지 않는다. 대신에, 그것은 개체가 얼마나 빨리 자라는지를 감지하고, 그 개체가 성체가 되는 시간을 적절하게 조절한다. 따라서 천천히 성장하는 개체와 빠르게 성장하는 개체는 같은 크기에 도달한다. 이는 더 많은 시간이 주어지기 때문이다.
이 내장된 메커니즘은 성장 속도를 하나의 발달 시계(developmental clock)로 기능하는 유전 진동자(genetic oscillator)의 빈도와 결합되어 있었다. 네 번의 진동 후에, 어린 개체는 발달이 끝나고, 동물의 성장과 발달이 대부분 종료되는 성체 단계로 나아간다.
그의 이론을 시험하기 위해서, 토빈은 유전 진동자의 속도를 높였다. 그 결과 더 빠른 시계를 가진 동물들은 성체로 더 빠르게 성장했지만, 성체가 되면서 몸집이 더 작아졌다. 이것은 그들이 마지막 진동을 통해 너무 빨리 성장했고, 벌레의 프로그래밍 된 크기로 성장하기에 충분한 시간이 없었다는 것을 암시한다. 이 유전 진동자가 다른 동물들에서도 관찰된다면, 발달 동안의 설계적 특성이 확인될 수 있다. 만약 그렇다면, 그것은 동물의 성장이 더욱 복잡함을 가리키는 것이다. 모든 동물이 이러한 시스템을 갖고 있을까?
이 질문에 답을 위해서는 새로운 연구들이 필요하다. 그러한 시스템은 동물들에게 보편적이거나, 적어도 같은 기능을 하는 여러 시스템들이 동물 세계에 존재할 가능성이 있다. 그것은 어떻게 작동되는가? 유전 진동자는 활성 단백질 A(activator protein A)와 성장을 제어하는 억제 단백질 R(repressor protein R) 사이의 초고감도 피드백 시스템(ultrasensitive feedback system)을 포함하고 있다. 활성 단백질 A의 상향 조절과 억제 단백질 R의 하향 조절은 성장을 증가시킬 것이다. 이것과 반대되는 작용은 성장을 축소시킬 것이다.
필요한 과정이 하나 더 발견되었다. 이 과정은 성체의 크기를 결정하는 적절한 성장적 발달을 포함하는데, 이것은 또한 유전학을 포함한 몇 가지 요인들에 의해서 제한되고 있었다.[4]
요약
생물체 내의 수많은 유전자들과 경로들은 성체의 크기를 조절하고, 장기의 크기를 적절한 비율로 유지한다. 토빈의 연구는 동물 발달의 복잡성에 대한 새로운 문을 열었다. 이러한 복잡한 조절 시스템이 각 생물마다 무작위적인 돌연변이로 우연히 생겨났을까? 아래의 참고문헌들 중에서 어떤 자료도 이러한 시스템이 점진적인 방식으로 진화했을 것이라고 가정하지 않고 있다. 동물이 배아에서 성체로 발달됨에 따라, 각 단계마다 생물에 필요한 요구를 충족시킬 수 있어야 한다. 이것은 각 발달 단계 동안에 각 기관의 성장을 조절하는 제어 시스템이 필요하다는 것이다. 그것은 정말로 놀라운 특성이다.
포유류 성장의 놀라운 특성은 자기-안정(self-stabilizing), 또는 다른 비유로 "목표물 탐색(target seeking)"이라는 것이다. 우주 로켓에 못지 않게, 어린 개체들은 그들의 유전자 구성의 제어 시스템에 의해 조절되고, 자연 환경으로부터 흡수된 에너지에 의해서 구동되는, 그들의 성장 궤도(trajectories)를 갖고 있다. 어린 개체가 급성 영양실조나 갑작스런 호르몬 결핍의 경우에 자연적 성장 궤도를 이탈한다. 그러나 부족했던 영양분이나, 호르몬이 다시 공급되자마자, 어린 개체는 다시 원래의 성장 곡선을 따라잡아야 한다. 어린 개체의 성장이 거기에 도달하면, 다시 속도를 늦추어, 다시 한번 예전의 궤도로 그것의 경로를 조정한다.[5]
토빈의 연구는 동물들이 어떻게 정상적인 성체 크기에 도달하는지에 대한 몇 가지 세부사항만을 살펴보았다. 동물 생물학에 대한 우리의 이해가 증가함에 따라, 그것의 복잡성은 점점 더 증가하고 있다. 동시에 이러한 시스템들이 우연히 생겨났을 것이라는 진화론의 타당성은 점점 더 감소하고 있다.
References
[1] Gokhale, R.H., and A.W. Shingleton. Size control: the developmental physiology of body and organ size regulation. WIREs [Wiley Interdisciplinary Reviews] Developmental Biology 4(4): 335–356, July/August 2015.
[2] Friedrich Miescher Institute for Biomedical Research. How animals reach their correct size. https://www.fmi.ch/news-events/articles/news.html?news=546, 7 June 2022. [A review of: Stojanovski, Klement, Helge Großhans, and Benjamin D. Towbin. Coupling of growth rate and developmental tempo reduces body size heterogeneity in C. elegans. Nature Communications 13: 3132, 2022.]
[3] Friedrich Miescher Institute for Biomedical Research, 2022.
[4] Blanckenhorn, W.U. The evolution of body size: What keeps organisms small? Quarterly Review of Biology 75(4): 385–407, December 2000.
[5] Tanner, J.M. Regulation of growth in size in mammals. Nature 199(4896): 845–850, 31 August 1963.
*참조 : 생물은 성장을 멈출 때를 어떻게 아는가?
https://creation.kr/animals/?idx=11893049&bmode=view
물리학에 정통한 동물들 : 거미, 타조, 꿀벌, 난세포, 치아에서 보여지는 지적설계
https://creation.kr/animals/?idx=11142229&bmode=view
부서지지 않는 딱정벌레는 과학자들을 놀라게 한다.
http://creation.kr/animals/?idx=5234648&bmode=view
포유동물의 놀라운 능력들 : 바다표범의 GPS, 생쥐의 후각, 동물들의 시간 관리
http://creation.kr/animals/?idx=1291179&bmode=view
동물과 식물의 경이로운 기술들 : 거미, 물고기, 바다오리, 박쥐, 날쥐, 다년생 식물.
http://creation.kr/animals/?idx=1291150&bmode=view
놀라운 능력의 동물들 : 코끼리, 돌고래, 물고기, 꿀벌, 거미, 무당벌레.
http://creation.kr/animals/?idx=1291155&bmode=view
고양이의 수염과 일각고래의 엄니는 감각기관. 그리고 바다뱀, 초파리, 캐나다두루미의 놀라운 특성들.
http://creation.kr/animals/?idx=1291164&bmode=view
과학자들도 놀라는 기능들이 우연히 생겨날 수 있을까? : 거미, 빗해파리, 개미, 새, 삼나무, 개구리, 문어, 상어..
http://creation.kr/animals/?idx=1291168&bmode=view
동물과 식물의 경이로운 기술들 : 거미, 물고기, 바다오리, 박쥐, 날쥐, 다년생 식물
http://creation.kr/animals/?idx=1291150&bmode=view
동물들의 새로 발견된 놀라운 특성들 : 개구리, 거미, 가마우지, 게, 호랑나비, 박쥐의 경이로움
http://creation.kr/animals/?idx=1291169&bmode=view
생물들의 정교한 공학기술과 최적화 : 박쥐, 말벌, 물고기, 꿀벌, 개미, 얼룩말과 생체모방공학
http://creation.kr/animals/?idx=1291170&bmode=view
생물에서 발견되는 경이로운 기술들 : 나비 날개의 광흡수, 소금쟁이의 부양성, 생물학적 배터리
http://creation.kr/animals/?idx=1291291&bmode=view
생물에서 발견되는 초고도 복잡성의 기원은? : 나방, 초파리, 완보동물, 조류와 포유류의 경이로움
http://creation.kr/animals/?idx=1291208&bmode=view
돌을 갈도록 디자인된 성게의 이빨
http://creation.kr/animals/?idx=1291051&bmode=view
작은 물고기는 수마일 밖에서도 냄새를 맡는다.
http://creation.kr/animals/?idx=1290999&bmode=view
물 위에서 걸을 수 있도록 하는 설계 : 소금쟁이 다리에서 발견된 최적화된 기하학
http://creation.kr/animals/?idx=1291165&bmode=view
동물들이 혹한의 추위에도 견딜 수 있는 이유는? : 펭귄이 물에 젖어도 얼어붙지 않는 비밀이 밝혀지다.
http://creation.kr/animals/?idx=1291193&bmode=view
바다의 카멜레온인 갑오징어는 스텔스 기술도 갖고 있었다.
http://creation.kr/animals/?idx=1291196&bmode=view
생물에 있는 복잡한 감지기와 '아마존 고'
http://creation.kr/animals/?idx=1291205&bmode=view
하나님의 놀라운 접착제 : 물속에서 달라붙는 한 편형동물의 경이로운 능력
http://creation.kr/animals/?idx=1290970&bmode=view
잘려지지 않는 놀라운 구조 : 자연의 설계는 새로운 슈퍼 소재에 영감을 준다.
http://creation.kr/Plants/?idx=5191540&bmode=view
생체모방공학의 최근 소식 : 리그닌, 가오리, 초파리를 모방한 공학기술
http://creation.kr/animals/?idx=1757476&bmode=view
생체모방공학과 경이로운 세포에 관한 새로운 소식들
http://creation.kr/LIfe/?idx=1291314&bmode=view
생체모방공학 분야는 지속적으로 확장되고 있다 : 뼈, 힘줄, 곰팡이, 법랑질, 효모, 곤충, 홍합, 말벌, 파리매...
http://creation.kr/animals/?idx=1291210&bmode=view
탁월한 방법으로 물을 모으고 있는 사막식물 대황 : 이 식물을 모방하여 건조지역의 지면피복재를 개발한다.
http://creation.kr/Plants/?idx=1291451&bmode=view
박쥐의 비행을 모방한 최첨단 비행 로봇의 개발
http://creation.kr/animals/?idx=1291213&bmode=view
뼈의 미세구조를 모방하여 개량된 균열에 강한 강철
http://creation.kr/Human/?idx=1291548&bmode=view
생체모방공학을 통한 강렬한 희망 1, 2 : 계속 발견되고 있는 생물들의 경이로운 능력들
http://creation.kr/animals/?idx=1291126&bmode=view
http://creation.kr/Plants/?idx=1291380&bmode=view
차세대 리더는 식물과 동물이다!
http://creation.kr/animals/?idx=1291131&bmode=view
단풍나무 씨앗을 모방한 소형 비행 로봇
http://creation.kr/Plants/?idx=1291384&bmode=view
탁월한 방법으로 물을 모으고 있는 사막식물 대황 : 이 식물을 모방하여 건조지역의 지면피복재를 개발한다.
http://creation.kr/Plants/?idx=1291451&bmode=view
식충식물이 R&D 수상을 이끌다 : 생체모방공학의 새로운 기술들
http://creation.kr/Plants/?idx=1291385&bmode=view
자연이 38억 년 동안 연구개발을 했는가? : 생체모방공학의 계속되는 성공 - 해바라기, 규조류, 식물 의약품...
http://creation.kr/Plants/?idx=1291293&bmode=view
개, 올빼미, 딱정벌레를 모방하라 : 생체모방공학은 우리의 삶을 증진시킬 것이다.
http://creation.kr/animals/?idx=1291294&bmode=view
생체모방공학 소식으로 시작되는 한 해
http://creation.kr/LIfe/?idx=1291295&bmode=view
계속되는 생체모방공학의 성공 : 반딧불이, 나무, 피부, DNA, 달팽이처럼 만들라.
http://creation.kr/animals/?idx=1291138&bmode=view
큰부리새, 굴, 거미를 이용한 생체모방공학
http://creation.kr/animals/?idx=1291140&bmode=view
생체모방공학의 여러 소식들
http://creation.kr/Plants/?idx=1291401&bmode=view
먹장어, 도마뱀붙이, 잠자리의 생체모방공학
http://creation.kr/animals/?idx=1291142&bmode=view
개구리 발바닥을 모방하라! : 더러운 곳과 물속에서도 사용할 수 있는 접착 테이프
http://creation.kr/animals/?idx=1291145&bmode=view
나비의 날개 : 방수 옷에 영감을 불어넣다.
http://creation.kr/animals/?idx=1291154&bmode=view
생물권 전역에서 공학적 설계가 발견되고 있다. : 생체모방공학의 계속되는 행진
http://creation.kr/animals/?idx=1291158&bmode=view
역공학이 밝혀낸 이상적 추진 방식. : 생물들의 유사한 공학적 구조는 우연(수렴진화)인가, 설계인가?
http://creation.kr/animals/?idx=1291160&bmode=view
모든 발명에 영감을 주고 있는 생체모방공학
http://creation.kr/animals/?idx=1291161&bmode=view
불가능해 보이는 일들을 수행하는 생물들 : 소금쟁이를 모방한 생체모방공학
http://creation.kr/animals/?idx=1827845&bmode=view
경이로운 공학 기술이 수백만 년의 자연적 과정으로? : 생체모방 공학자들의 논리적 오류
http://creation.kr/animals/?idx=1291166&bmode=view
딱따구리, 혈액응고, 분자모터를 모방한 생체모방공학
http://creation.kr/animals/?idx=1291167&bmode=view
생물들의 정교한 공학기술과 최적화. : 박쥐, 말벌, 물고기, 꿀벌, 개미, 얼룩말과 생체모방공학
http://creation.kr/animals/?idx=1291170&bmode=view
문어의 피부를 모방한 최첨단 위장용 소재의 개발.
http://creation.kr/animals/?idx=1291174&bmode=view
위장의 천재 문어는 피부로 빛을 감지하고 있었다! : 로봇 공학자들은 문어의 팔은 모방하고 있다.
http://creation.kr/animals/?idx=1291184&bmode=view
생체모방공학의 새로운 뉴스들.
http://creation.kr/animals/?idx=1291188&bmode=view
생물들의 놀라운 기술과 생체모방공학 : 이러한 기술들이 모두 우연히 생겨났을까?
http://creation.kr/LIfe/?idx=1291307&bmode=view
말벌의 독이 항암제?
http://creation.kr/animals/?idx=1291189&bmode=view
깡충거미에서 영감을 얻은 마이크로-로봇 눈.
http://creation.kr/animals/?idx=3635694&bmode=view
출처 : CEH, 2022. 6. 28.
주소 : https://crev.info/2022/06/adult-body-proportions/
번역 : 미디어위원회
동물의 성체 크기와 장기 비율이 일정한 이유는?
(Adult Body Proportions Partly Solved)
Jerry Bergman
한 생물 종의 성체 크기가 일정한 이유는 무엇인가? 새롭게 밝혀진 유전적 과정은 신체 크기와 장기 크기의 비례성이 어떻게 작동되는지에 빛을 비춰주고 있다.
이것은 흥미로운 미스터리이다: 어떻게 같은 생물 종의 성체 구성원들 사이에 크기 차이가 거의 없는 것일까?
개(dogs)와 같은 동물에서 종들 사이의 엄청난 크기 차이를 생각해 보라. 푸들(Poodle)과 마스티프(Mastiff)는 몸체 크기가 매우 차이가 난다. 그러나 각 개의 장기들은 그들의 크기에 정확히 비례한다. 작은 푸들은 그 크기와 몸무게에 맞는 완벽한 크기의 장기와 신체 부분들을 갖고 있고, 커다란 마스티프 또한 그 크기에 맞는 장기와 신체 부분을 갖고 있다. 무엇인가가 이 결과들을 통제하고 있다.[1] 2022년 6월 7일 독일의 프리드리히 미셔 생의학 연구소(Friedrich Miescher Institute for Biomedical Research)의 보도자료는[2] 이 미스터리를 다음과 같이 다루고 있었다 :
최종 몸체와 장기 크기의 발달에 대한 조절은 정확한 비율의 기능적인 성체를 형성하는데 기초가 된다. 지난 20년 동안의 연구는 최종 신체 크기에 영향을 미치는 긴 유전자 목록과 신호 경로들을 밝혀냈다. 그러나 신체 크기와 장기 크기는 궁극적으로 모든 생물들의 공통적 특징이며, 신체 및 장기 크기를 조절하기 위해서 많은 유전자들과 경로들이 생리학적으로 어떻게 기능하는지는 대부분 알려져 있지 않다.
베른 대학(University of Bern)의 벤자민 토빈(Benjamin Towbin)과 연구자들은 신체 내 장기들의 크기와 비율을 조절하기 위해서, 많은 유전자들과 경로들이 어떻게 기능하는지를 알아내려고 시도했다. 태어났을 때 푸들과 마스티프는 거의 같은 크기였지만, 성체의 결과는 극적으로 달랐다. 보통 "같은 종의 성체는 보통 크기가 거의 동일하다."[2] 위, 심장, 간, 귀, 혀는 성장을 진행하다가, 언제 성장을 멈추어야 하는지를 알고 있다.
.개의 품종 간 크기 차이는 매우 크다.
인공사육자들은 큰 개와 작은 개를 교배시켜 중간 크기의 새끼를 낳을 수 있고, 중간 종은 자신의 성체 크기에 적합한 장기를 갖게 된다. 닥스훈트(Dachshund)는 전형적인 작은 개의 크기와 비슷하지만, 매우 짧은 다리를 갖고 있다. 닥스훈트와 푸들이 섞이면, 닥스훈트의 다리 크기는 유지되지만, 푸들의 털이 지배적 형질이 된다. 유명한 멘델의 완두콩 연구 이래로, 과학자들은 형질이 유전자에 의해 결정된다는 것을 알게 되었다.
토빈은 다세포동물들이 어떻게 몸의 크기와 비례하여 말단 장기의 크기가 조절되는지 거의 알려져 있지 않다는 것을 인정하고 있었다. 그는 그러한 일이 어떻게 일어나는지 궁금해 한 후, 새로운 가설을 실험했다.
동일한 생물 종(species)의 개체들은 같은 크기로 자란다. 발달 과정과 환경 조건의 내재적 무작위성이 개체들의 성장 속도에 상당한 차이를 만들어내기 때문에, 크기의 이러한 균일성은 놀랍다. 게다가, 동물의 성장은 종종 기하급수적으로 일어나기 때문에, 심지어 성장의 작은 차이도 크기의 큰 차이로 증폭될 수 있다. 그럼에도 불구하고, 어떻게 동물들은 정확한 크기에 도달하는 것일까?[3]
이것이 토빈이 수행한 연구의 초점이었고, 그의 발견은 많은 사람들을 놀라게 했다.
이전에 생각했던 것보다 훨씬 더 복잡한 메커니즘
저속촬영(time-lapse photography) 기법을 사용하여, 토빈의 연구팀은 수백 마리의 회충(roundworms)의 발달 과정을 관찰했다. 그들은 내재된 메커니즘이 존재한다는 것을 발견했다.
그 메커니즘은 동물 개체들 사이의 신체 크기의 균일성을 보장한다. 그것은 크기 자체를 측정하는 것으로 보이지 않는다. 대신에, 그것은 개체가 얼마나 빨리 자라는지를 감지하고, 그 개체가 성체가 되는 시간을 적절하게 조절한다. 따라서 천천히 성장하는 개체와 빠르게 성장하는 개체는 같은 크기에 도달한다. 이는 더 많은 시간이 주어지기 때문이다.
이 내장된 메커니즘은 성장 속도를 하나의 발달 시계(developmental clock)로 기능하는 유전 진동자(genetic oscillator)의 빈도와 결합되어 있었다. 네 번의 진동 후에, 어린 개체는 발달이 끝나고, 동물의 성장과 발달이 대부분 종료되는 성체 단계로 나아간다.
그의 이론을 시험하기 위해서, 토빈은 유전 진동자의 속도를 높였다. 그 결과 더 빠른 시계를 가진 동물들은 성체로 더 빠르게 성장했지만, 성체가 되면서 몸집이 더 작아졌다. 이것은 그들이 마지막 진동을 통해 너무 빨리 성장했고, 벌레의 프로그래밍 된 크기로 성장하기에 충분한 시간이 없었다는 것을 암시한다. 이 유전 진동자가 다른 동물들에서도 관찰된다면, 발달 동안의 설계적 특성이 확인될 수 있다. 만약 그렇다면, 그것은 동물의 성장이 더욱 복잡함을 가리키는 것이다. 모든 동물이 이러한 시스템을 갖고 있을까?
이 질문에 답을 위해서는 새로운 연구들이 필요하다. 그러한 시스템은 동물들에게 보편적이거나, 적어도 같은 기능을 하는 여러 시스템들이 동물 세계에 존재할 가능성이 있다. 그것은 어떻게 작동되는가? 유전 진동자는 활성 단백질 A(activator protein A)와 성장을 제어하는 억제 단백질 R(repressor protein R) 사이의 초고감도 피드백 시스템(ultrasensitive feedback system)을 포함하고 있다. 활성 단백질 A의 상향 조절과 억제 단백질 R의 하향 조절은 성장을 증가시킬 것이다. 이것과 반대되는 작용은 성장을 축소시킬 것이다.
필요한 과정이 하나 더 발견되었다. 이 과정은 성체의 크기를 결정하는 적절한 성장적 발달을 포함하는데, 이것은 또한 유전학을 포함한 몇 가지 요인들에 의해서 제한되고 있었다.[4]
요약
생물체 내의 수많은 유전자들과 경로들은 성체의 크기를 조절하고, 장기의 크기를 적절한 비율로 유지한다. 토빈의 연구는 동물 발달의 복잡성에 대한 새로운 문을 열었다. 이러한 복잡한 조절 시스템이 각 생물마다 무작위적인 돌연변이로 우연히 생겨났을까? 아래의 참고문헌들 중에서 어떤 자료도 이러한 시스템이 점진적인 방식으로 진화했을 것이라고 가정하지 않고 있다. 동물이 배아에서 성체로 발달됨에 따라, 각 단계마다 생물에 필요한 요구를 충족시킬 수 있어야 한다. 이것은 각 발달 단계 동안에 각 기관의 성장을 조절하는 제어 시스템이 필요하다는 것이다. 그것은 정말로 놀라운 특성이다.
포유류 성장의 놀라운 특성은 자기-안정(self-stabilizing), 또는 다른 비유로 "목표물 탐색(target seeking)"이라는 것이다. 우주 로켓에 못지 않게, 어린 개체들은 그들의 유전자 구성의 제어 시스템에 의해 조절되고, 자연 환경으로부터 흡수된 에너지에 의해서 구동되는, 그들의 성장 궤도(trajectories)를 갖고 있다. 어린 개체가 급성 영양실조나 갑작스런 호르몬 결핍의 경우에 자연적 성장 궤도를 이탈한다. 그러나 부족했던 영양분이나, 호르몬이 다시 공급되자마자, 어린 개체는 다시 원래의 성장 곡선을 따라잡아야 한다. 어린 개체의 성장이 거기에 도달하면, 다시 속도를 늦추어, 다시 한번 예전의 궤도로 그것의 경로를 조정한다.[5]
토빈의 연구는 동물들이 어떻게 정상적인 성체 크기에 도달하는지에 대한 몇 가지 세부사항만을 살펴보았다. 동물 생물학에 대한 우리의 이해가 증가함에 따라, 그것의 복잡성은 점점 더 증가하고 있다. 동시에 이러한 시스템들이 우연히 생겨났을 것이라는 진화론의 타당성은 점점 더 감소하고 있다.
References
[1] Gokhale, R.H., and A.W. Shingleton. Size control: the developmental physiology of body and organ size regulation. WIREs [Wiley Interdisciplinary Reviews] Developmental Biology 4(4): 335–356, July/August 2015.
[2] Friedrich Miescher Institute for Biomedical Research. How animals reach their correct size. https://www.fmi.ch/news-events/articles/news.html?news=546, 7 June 2022. [A review of: Stojanovski, Klement, Helge Großhans, and Benjamin D. Towbin. Coupling of growth rate and developmental tempo reduces body size heterogeneity in C. elegans. Nature Communications 13: 3132, 2022.]
[3] Friedrich Miescher Institute for Biomedical Research, 2022.
[4] Blanckenhorn, W.U. The evolution of body size: What keeps organisms small? Quarterly Review of Biology 75(4): 385–407, December 2000.
[5] Tanner, J.M. Regulation of growth in size in mammals. Nature 199(4896): 845–850, 31 August 1963.
*참조 : 생물은 성장을 멈출 때를 어떻게 아는가?
https://creation.kr/animals/?idx=11893049&bmode=view
물리학에 정통한 동물들 : 거미, 타조, 꿀벌, 난세포, 치아에서 보여지는 지적설계
https://creation.kr/animals/?idx=11142229&bmode=view
부서지지 않는 딱정벌레는 과학자들을 놀라게 한다.
http://creation.kr/animals/?idx=5234648&bmode=view
포유동물의 놀라운 능력들 : 바다표범의 GPS, 생쥐의 후각, 동물들의 시간 관리
http://creation.kr/animals/?idx=1291179&bmode=view
동물과 식물의 경이로운 기술들 : 거미, 물고기, 바다오리, 박쥐, 날쥐, 다년생 식물.
http://creation.kr/animals/?idx=1291150&bmode=view
놀라운 능력의 동물들 : 코끼리, 돌고래, 물고기, 꿀벌, 거미, 무당벌레.
http://creation.kr/animals/?idx=1291155&bmode=view
고양이의 수염과 일각고래의 엄니는 감각기관. 그리고 바다뱀, 초파리, 캐나다두루미의 놀라운 특성들.
http://creation.kr/animals/?idx=1291164&bmode=view
과학자들도 놀라는 기능들이 우연히 생겨날 수 있을까? : 거미, 빗해파리, 개미, 새, 삼나무, 개구리, 문어, 상어..
http://creation.kr/animals/?idx=1291168&bmode=view
동물과 식물의 경이로운 기술들 : 거미, 물고기, 바다오리, 박쥐, 날쥐, 다년생 식물
http://creation.kr/animals/?idx=1291150&bmode=view
동물들의 새로 발견된 놀라운 특성들 : 개구리, 거미, 가마우지, 게, 호랑나비, 박쥐의 경이로움
http://creation.kr/animals/?idx=1291169&bmode=view
생물들의 정교한 공학기술과 최적화 : 박쥐, 말벌, 물고기, 꿀벌, 개미, 얼룩말과 생체모방공학
http://creation.kr/animals/?idx=1291170&bmode=view
생물에서 발견되는 경이로운 기술들 : 나비 날개의 광흡수, 소금쟁이의 부양성, 생물학적 배터리
http://creation.kr/animals/?idx=1291291&bmode=view
생물에서 발견되는 초고도 복잡성의 기원은? : 나방, 초파리, 완보동물, 조류와 포유류의 경이로움
http://creation.kr/animals/?idx=1291208&bmode=view
돌을 갈도록 디자인된 성게의 이빨
http://creation.kr/animals/?idx=1291051&bmode=view
작은 물고기는 수마일 밖에서도 냄새를 맡는다.
http://creation.kr/animals/?idx=1290999&bmode=view
물 위에서 걸을 수 있도록 하는 설계 : 소금쟁이 다리에서 발견된 최적화된 기하학
http://creation.kr/animals/?idx=1291165&bmode=view
동물들이 혹한의 추위에도 견딜 수 있는 이유는? : 펭귄이 물에 젖어도 얼어붙지 않는 비밀이 밝혀지다.
http://creation.kr/animals/?idx=1291193&bmode=view
바다의 카멜레온인 갑오징어는 스텔스 기술도 갖고 있었다.
http://creation.kr/animals/?idx=1291196&bmode=view
생물에 있는 복잡한 감지기와 '아마존 고'
http://creation.kr/animals/?idx=1291205&bmode=view
하나님의 놀라운 접착제 : 물속에서 달라붙는 한 편형동물의 경이로운 능력
http://creation.kr/animals/?idx=1290970&bmode=view
잘려지지 않는 놀라운 구조 : 자연의 설계는 새로운 슈퍼 소재에 영감을 준다.
http://creation.kr/Plants/?idx=5191540&bmode=view
생체모방공학의 최근 소식 : 리그닌, 가오리, 초파리를 모방한 공학기술
http://creation.kr/animals/?idx=1757476&bmode=view
생체모방공학과 경이로운 세포에 관한 새로운 소식들
http://creation.kr/LIfe/?idx=1291314&bmode=view
생체모방공학 분야는 지속적으로 확장되고 있다 : 뼈, 힘줄, 곰팡이, 법랑질, 효모, 곤충, 홍합, 말벌, 파리매...
http://creation.kr/animals/?idx=1291210&bmode=view
탁월한 방법으로 물을 모으고 있는 사막식물 대황 : 이 식물을 모방하여 건조지역의 지면피복재를 개발한다.
http://creation.kr/Plants/?idx=1291451&bmode=view
박쥐의 비행을 모방한 최첨단 비행 로봇의 개발
http://creation.kr/animals/?idx=1291213&bmode=view
뼈의 미세구조를 모방하여 개량된 균열에 강한 강철
http://creation.kr/Human/?idx=1291548&bmode=view
생체모방공학을 통한 강렬한 희망 1, 2 : 계속 발견되고 있는 생물들의 경이로운 능력들
http://creation.kr/animals/?idx=1291126&bmode=view
http://creation.kr/Plants/?idx=1291380&bmode=view
차세대 리더는 식물과 동물이다!
http://creation.kr/animals/?idx=1291131&bmode=view
단풍나무 씨앗을 모방한 소형 비행 로봇
http://creation.kr/Plants/?idx=1291384&bmode=view
탁월한 방법으로 물을 모으고 있는 사막식물 대황 : 이 식물을 모방하여 건조지역의 지면피복재를 개발한다.
http://creation.kr/Plants/?idx=1291451&bmode=view
식충식물이 R&D 수상을 이끌다 : 생체모방공학의 새로운 기술들
http://creation.kr/Plants/?idx=1291385&bmode=view
자연이 38억 년 동안 연구개발을 했는가? : 생체모방공학의 계속되는 성공 - 해바라기, 규조류, 식물 의약품...
http://creation.kr/Plants/?idx=1291293&bmode=view
개, 올빼미, 딱정벌레를 모방하라 : 생체모방공학은 우리의 삶을 증진시킬 것이다.
http://creation.kr/animals/?idx=1291294&bmode=view
생체모방공학 소식으로 시작되는 한 해
http://creation.kr/LIfe/?idx=1291295&bmode=view
계속되는 생체모방공학의 성공 : 반딧불이, 나무, 피부, DNA, 달팽이처럼 만들라.
http://creation.kr/animals/?idx=1291138&bmode=view
큰부리새, 굴, 거미를 이용한 생체모방공학
http://creation.kr/animals/?idx=1291140&bmode=view
생체모방공학의 여러 소식들
http://creation.kr/Plants/?idx=1291401&bmode=view
먹장어, 도마뱀붙이, 잠자리의 생체모방공학
http://creation.kr/animals/?idx=1291142&bmode=view
개구리 발바닥을 모방하라! : 더러운 곳과 물속에서도 사용할 수 있는 접착 테이프
http://creation.kr/animals/?idx=1291145&bmode=view
나비의 날개 : 방수 옷에 영감을 불어넣다.
http://creation.kr/animals/?idx=1291154&bmode=view
생물권 전역에서 공학적 설계가 발견되고 있다. : 생체모방공학의 계속되는 행진
http://creation.kr/animals/?idx=1291158&bmode=view
역공학이 밝혀낸 이상적 추진 방식. : 생물들의 유사한 공학적 구조는 우연(수렴진화)인가, 설계인가?
http://creation.kr/animals/?idx=1291160&bmode=view
모든 발명에 영감을 주고 있는 생체모방공학
http://creation.kr/animals/?idx=1291161&bmode=view
불가능해 보이는 일들을 수행하는 생물들 : 소금쟁이를 모방한 생체모방공학
http://creation.kr/animals/?idx=1827845&bmode=view
경이로운 공학 기술이 수백만 년의 자연적 과정으로? : 생체모방 공학자들의 논리적 오류
http://creation.kr/animals/?idx=1291166&bmode=view
딱따구리, 혈액응고, 분자모터를 모방한 생체모방공학
http://creation.kr/animals/?idx=1291167&bmode=view
생물들의 정교한 공학기술과 최적화. : 박쥐, 말벌, 물고기, 꿀벌, 개미, 얼룩말과 생체모방공학
http://creation.kr/animals/?idx=1291170&bmode=view
문어의 피부를 모방한 최첨단 위장용 소재의 개발.
http://creation.kr/animals/?idx=1291174&bmode=view
위장의 천재 문어는 피부로 빛을 감지하고 있었다! : 로봇 공학자들은 문어의 팔은 모방하고 있다.
http://creation.kr/animals/?idx=1291184&bmode=view
생체모방공학의 새로운 뉴스들.
http://creation.kr/animals/?idx=1291188&bmode=view
생물들의 놀라운 기술과 생체모방공학 : 이러한 기술들이 모두 우연히 생겨났을까?
http://creation.kr/LIfe/?idx=1291307&bmode=view
말벌의 독이 항암제?
http://creation.kr/animals/?idx=1291189&bmode=view
깡충거미에서 영감을 얻은 마이크로-로봇 눈.
http://creation.kr/animals/?idx=3635694&bmode=view
출처 : CEH, 2022. 6. 28.
주소 : https://crev.info/2022/06/adult-body-proportions/
번역 : 미디어위원회