귀의 경이로운 복잡성이 계속 밝혀지고 있다.
그리고 박쥐에 대항하여 방해 초음파를 방출하는 나방들.
(The Parts List for Hearing)
David F. Coppedge
소리를 들을 때 어떤 일이 일어나는지 듣고 싶은가? 청각신경과 연결되어 있는 유모세포(hair cells)는 특정 주파수에 반응하여 유체에서 파도를 친다. 그리고 수백 종의 단백질들이 이 소리를 듣는 과정에 관여한다. 하버드 의과대학(2015. 5. 7)의 연구자들은 청력에 관여하는 유모세포에 관한 몇 가지 놀랄만한 사실을 발표하였다 :
균형을 위해, 유모세포의 다섯 개로 분리된 패치(patches)들은 움직임을 감지하고, 중력의 끌림을 해석하면서, 유모에 공간이 있는 곳을 뇌에게 말해준다.
소리를 듣기 위해, 16,000개의 유모세포에 있는 세포-폭의 다섯 개의 리본들이, 유모세포가 음파에 반응하여 진동하는 달팽이 모양의 구조인 달팽이관(cochlea) 내에서 나선으로 움직인다. 음파의 각 주기는 유체로 채워진 두 공간 사이에 부유되어 있는 일종의 세포들의 트램펄린(trampoline)을 타고, 이들 세포들의 앞 뒤쪽 끝에 있는 미세한 섬모(cilia)들로 보내진다.
움직임은 세포들에 있는 기공(pores)들을 열고, 전류가 안쪽으로 흘러가도록 한다. 전기 신호로의 이러한 기계적 변환은 뇌로 신경자극을 보내고, 소리를 듣게 되는 것이다.
유전성 난청의 원인을 이해하기위한 노력으로, HMS 연구자들은 청력을 위한 '부품 목록(parts list)'을 최초로 만들어보고자 했다. 생쥐(mice)를 사용해서, 그들은 지금까지 청각에 관여하는 300여 개의 유전자들을 확인했다. 하지만 연구자들은 그들 단백질의 1/3만이 알려져 있다고 생각하고 있었다.
그 논문에 게재된 달팽이관의 내부 그림은 마치 고도로 조직화된 구조를 가진 세포들의 배열처럼 보인다. (이미지는 여기를 클릭). 유모세포는 녹색으로 표시되어있다. 파이프 오르간의 건반을 닮은 이 배열은 달팽이관의 코일로 점점 가늘어지는데, 특정 주파수에 반응하는 유모세포의 각 열(rank)를 가지고 있다.
*관련기사 : 달팽이관에서 소리 주파수 구별해주는 세포 발달과정 규명 (2015. 3. 10. 연합뉴스)
https://www.yna.co.kr/view/AKR20150309133900017
박쥐처럼 만들라.
만약 당신이 양호한 고주파 청력을 가지고 있다면, 당신은 박쥐가 하는 것처럼, 소리와 함께 주변을 볼 수 있는 반향(echoes)을 사용할 수 있다는 것이다. 사우샘프턴 대학(University of Southampton, 2015. 5. 8)의 연구자들은 고주파 반응이 가장 좋은 결과를 얻을 수 있음을 발견했다. 이것은 귀의 음성 반응의 정밀성을 상승시킴으로서, 시각장애인이 시력 소실을 보상할 수 있는 방법이라는 것이다.
박쥐(bats)는 돌고래(dolphins)처럼 먹이의 위치를 찾기 위해서 음파탐지장치(biosonar)를 사용한다. PNAS(2015. 5. 26) 지의 한 논문은 박쥐들이 초음파를 방출할 때 마치 줌렌즈를 작동시키는 것처럼, 그들 입의 벌림(gape)을 어떻게 조정하고 있는지를 기술하고 있었다. 또한 먹이 생물들은 박쥐의 공격을 저지하기 위한 자신들의 방법을 가지고 있음이 밝혀졌다. PNAS 지의 또 다른 논문에 의하면, 박각시 나방(hawkmoths)들은 박쥐의 음파탐지기를 방해하는(jamming) 초음파(ultrasound)를 방출한다는 것이다. 그 논문은 (고도로 정교한) 이 방해 초음파의 발사 능력을 가진 나방들도 독립적으로 각각 두 번 진화했다고 주장하고 있었다.
*관련기사 : 박쥐 vs 나방 ‘초음파’로 싸운다 (2015. 5. 10. 나우뉴스)
http://nownews.seoul.co.kr/news/newsView.php?id=20150510601002
*5/13/2015 추가 : Science Daily(2015. 4. 22) 지는 고막(eardrums)은 포유류와 파충류/조류에서 독립적으로 각각 진화했다고 한 진화론자는 말하고 있었다 : ”수렴진화(convergent evolution)는 서로 매우 유사한 구조들을 종종 각기 만들어낼 수 있었다.”
진화 이야기(수렴진화 등)는 그냥 무시해 버려라. 중요한 것은 귀(ears)는 놀랍도록 복잡한 기관이라는 것이다. 청각시스템은 ‘한 요소도 제거 불가능한 복잡성(irreducible complexity, 환원 불가능한 복잡성)’을 가리킨다. 이러한 구조는 돌연변이들이 하나씩 일어나, 점진적으로 만들어질 수 없다. 생각해보라. 서로 같이 협력하는 두 개의 단백질들이 (그리고 그 암호를 가지고 있는 유전자들이) 우연히 만들어질 가능성도 매우 희박하다. 그런데 같이 협력하여 일사불란하게 움직이는 300~1000개의 단백질들과 유전정보들이 우연히 모두 만들어질 수 있을까? 그 그림을 보라. 우아하고 정교한 모습들은 무작위적인 과정들에 의해서는 도저히 생겨날 수 없는 것들이다. 그리고 그 전기적인 신호를 받아서 해석해줄 수 있는 뇌가 없다면, 완전히 쓸모없는 것이다.
고도로 정밀한 사양과 특수성을 가지는, 수많은 단백질들과 유전자들을 필요로 하는, 이러한 경이롭고 고도로 복잡한 기관은 절대로 우연히 생겨날 수 없다. 그것은 너무도 아름답고 기능적 한계를 뛰어넘는 지적설계(intelligent design)를 가리키는 것이다. 진화론자들이 이러한 경이로운 청각시스템이 무작위적인 자연적 과정으로 한 번도 아니고, 여러 번 우연히 생겨날 수 있다고 말하고 있는 진정한 이유는 무엇 때문일까? 독자들은 그 답을 알고 있을 것이다.
번역 - 미디어위원회
링크 - http://crev.info/2015/05/parts-list-for-hearing/
출처 - CEH, 2015. 5. 12.
귀의 경이로운 복잡성이 계속 밝혀지고 있다.
그리고 박쥐에 대항하여 방해 초음파를 방출하는 나방들.
(The Parts List for Hearing)
David F. Coppedge
소리를 들을 때 어떤 일이 일어나는지 듣고 싶은가? 청각신경과 연결되어 있는 유모세포(hair cells)는 특정 주파수에 반응하여 유체에서 파도를 친다. 그리고 수백 종의 단백질들이 이 소리를 듣는 과정에 관여한다. 하버드 의과대학(2015. 5. 7)의 연구자들은 청력에 관여하는 유모세포에 관한 몇 가지 놀랄만한 사실을 발표하였다 :
유전성 난청의 원인을 이해하기위한 노력으로, HMS 연구자들은 청력을 위한 '부품 목록(parts list)'을 최초로 만들어보고자 했다. 생쥐(mice)를 사용해서, 그들은 지금까지 청각에 관여하는 300여 개의 유전자들을 확인했다. 하지만 연구자들은 그들 단백질의 1/3만이 알려져 있다고 생각하고 있었다.
그 논문에 게재된 달팽이관의 내부 그림은 마치 고도로 조직화된 구조를 가진 세포들의 배열처럼 보인다. (이미지는 여기를 클릭). 유모세포는 녹색으로 표시되어있다. 파이프 오르간의 건반을 닮은 이 배열은 달팽이관의 코일로 점점 가늘어지는데, 특정 주파수에 반응하는 유모세포의 각 열(rank)를 가지고 있다.
*관련기사 : 달팽이관에서 소리 주파수 구별해주는 세포 발달과정 규명 (2015. 3. 10. 연합뉴스)
https://www.yna.co.kr/view/AKR20150309133900017
박쥐처럼 만들라.
만약 당신이 양호한 고주파 청력을 가지고 있다면, 당신은 박쥐가 하는 것처럼, 소리와 함께 주변을 볼 수 있는 반향(echoes)을 사용할 수 있다는 것이다. 사우샘프턴 대학(University of Southampton, 2015. 5. 8)의 연구자들은 고주파 반응이 가장 좋은 결과를 얻을 수 있음을 발견했다. 이것은 귀의 음성 반응의 정밀성을 상승시킴으로서, 시각장애인이 시력 소실을 보상할 수 있는 방법이라는 것이다.
박쥐(bats)는 돌고래(dolphins)처럼 먹이의 위치를 찾기 위해서 음파탐지장치(biosonar)를 사용한다. PNAS(2015. 5. 26) 지의 한 논문은 박쥐들이 초음파를 방출할 때 마치 줌렌즈를 작동시키는 것처럼, 그들 입의 벌림(gape)을 어떻게 조정하고 있는지를 기술하고 있었다. 또한 먹이 생물들은 박쥐의 공격을 저지하기 위한 자신들의 방법을 가지고 있음이 밝혀졌다. PNAS 지의 또 다른 논문에 의하면, 박각시 나방(hawkmoths)들은 박쥐의 음파탐지기를 방해하는(jamming) 초음파(ultrasound)를 방출한다는 것이다. 그 논문은 (고도로 정교한) 이 방해 초음파의 발사 능력을 가진 나방들도 독립적으로 각각 두 번 진화했다고 주장하고 있었다.
*5/13/2015 추가 : Science Daily(2015. 4. 22) 지는 고막(eardrums)은 포유류와 파충류/조류에서 독립적으로 각각 진화했다고 한 진화론자는 말하고 있었다 : ”수렴진화(convergent evolution)는 서로 매우 유사한 구조들을 종종 각기 만들어낼 수 있었다.”
진화 이야기(수렴진화 등)는 그냥 무시해 버려라. 중요한 것은 귀(ears)는 놀랍도록 복잡한 기관이라는 것이다. 청각시스템은 ‘한 요소도 제거 불가능한 복잡성(irreducible complexity, 환원 불가능한 복잡성)’을 가리킨다. 이러한 구조는 돌연변이들이 하나씩 일어나, 점진적으로 만들어질 수 없다. 생각해보라. 서로 같이 협력하는 두 개의 단백질들이 (그리고 그 암호를 가지고 있는 유전자들이) 우연히 만들어질 가능성도 매우 희박하다. 그런데 같이 협력하여 일사불란하게 움직이는 300~1000개의 단백질들과 유전정보들이 우연히 모두 만들어질 수 있을까? 그 그림을 보라. 우아하고 정교한 모습들은 무작위적인 과정들에 의해서는 도저히 생겨날 수 없는 것들이다. 그리고 그 전기적인 신호를 받아서 해석해줄 수 있는 뇌가 없다면, 완전히 쓸모없는 것이다.
고도로 정밀한 사양과 특수성을 가지는, 수많은 단백질들과 유전자들을 필요로 하는, 이러한 경이롭고 고도로 복잡한 기관은 절대로 우연히 생겨날 수 없다. 그것은 너무도 아름답고 기능적 한계를 뛰어넘는 지적설계(intelligent design)를 가리키는 것이다. 진화론자들이 이러한 경이로운 청각시스템이 무작위적인 자연적 과정으로 한 번도 아니고, 여러 번 우연히 생겨날 수 있다고 말하고 있는 진정한 이유는 무엇 때문일까? 독자들은 그 답을 알고 있을 것이다.
번역 - 미디어위원회
링크 - http://crev.info/2015/05/parts-list-for-hearing/
출처 - CEH, 2015. 5. 12.