새의 알에 들어있는 정보
: 알의 두께 변화, 자기장 탐지, 극락조, 송골매의 경이
(The Information Packed Into a Bird Egg)
David F. Coppedge
조류의 알(bird’s egg)에는 진화 가설로는 설명할 수 없는 많은 것들이 들어있다.
새의 알을 자세히 살펴보자.
.벌새(Hummingbird)의 알. (David Coppedge)
2017년 6월 27일 CEH는 토마스 히긴슨(Thomas Higginson)의 말을 인용했었다. 그는 1862년에 조류의 알은 ”우주에서 가장 완벽한 것”으로 선정되어야한다고 주장했었다. 최근 알 껍질(eggshells)을 면밀히 조사한 캐나다 몬트리올의 연구자들은 그의 주장이 사실임을 보여주고 있었다. 공개 열람이 가능한 Science Advances(2018. 3. 20) 지의 최근 연구에 따르면, 알 껍질은 동적 구조이기 때문에, 어미 새가 알을 부화시키는 동안은 파손되지 않도록 단단한 반면에, 부화 시기에는 점차적으로 약해져서, 병아리가 깨고 나갈 수 있다는 것이다. Nature(2018. 4. 3) 지는 그 논문을 온라인상에 게재하였고, Phys.org(2018. 3. 30) 지는 알 껍질의 미세 구조를 밝히고 있는 동영상을 보여주고 있었다.
그 결과는 수정란에서 배아의 발달과 부화되는 알의 생물학에 대한 통찰력을 제공하고 있다. 알은 산란되는 동안과 어미가 품고 있는 시기 동안, 부서지지 않고 보호되기 위해서 충분히 단단하다. 병아리는 알 껍질 속에서 자라면서 뼈의 형성을 위해 칼슘(calcium)이 필요하다. 알 껍질의 안쪽 부분은 병아리에 이 칼슘을 제공하기 위해 녹으면서, 부화 시에 쉽게 부서지도록 약해진다. 원자현미경(atomic force microscopy)과 전자 및 X-선 이미징 방법을 사용하여, 맥키(Marc McKee) 교수가 이끄는 연구팀은 알의 배양 도중에 발생하는 껍질의 나노구조의 미세한 변화로 인해, 이러한 이중 기능이 가능하다는 것을 발견했다.
Evolution News & Science Today(2018. 4. 6)와 마찬가지로, World Magazine(2018. 4. 12)도 이 지적설계와 관련된 내용을 담고 있었다. 이 발견은 생체모방 기술로 응용될 수도 있다는 것이다. World Magazine은 ”이러한 발견으로 공학자들은 새로운 성질을 지닌 합성 나노구조를 설계할 수도 있을 것”이라고 말했다. 불행하게도 공동 저자인 맥키는 The Guardian(2018. 3. 30) 지에서 이것을 자연적 과정에 의해 생겨난 것으로 말하고 있었다 :
그것에 대해 생각할 때, 우리는 자연과 생물학으로부터 영감을 받은 물질을 개발해내야 한다. 왜냐하면 우리는 자연이 수억 년의 진화를 거쳐 완성시킨 것을 이겨내기가 정말로 어렵기 때문이다.
분명히 그는 논리적으로 충분히 그것에 대해 생각해보지 않았다.
알에서 나오는 것은 무엇인가?
.21일째 부화를 확인하라. (Credit : Illustra Media).
알(egg) 내부에는 한때는 단세포였던 배아가 성장하고 있다. 세포 안에는 성체 조류를 만들어내기 위한 유전 정보 및 후성유전학적 지령이 들어있다. Illustra Media의 영화 ”비행: 천재적인 새들(Flight: The Genius of Birds)”을 보라. 완전한 새에 대한 모든 지시 사항들이 미세한 접합자(zygote, 수정란)에 들어있다. 여기에는 새가 환경으로부터 배울 수 있는 능력도 포함되어 있다. 이것은 접합자가 알보다 더 복잡하며, 성체 조류보다 더 복잡하다는 것을 의미한다. 부화하는 놀라운 새들을 살펴보면서, 알에 들어있을 유전정보의 양을 상상해 보라.
새들은 어떻게 지구 자기장을 감지할 수 있는가? (Science Daily, 2018. 4. 6).
알 내부에는 자기권으로부터 위치를 파악할 수 있는, 네비게이션 장비가 만들어지는 유전정보가 들어있다. 과학자들은 새들이 어떻게 지구 자기장을 감지하여 위치를 파악하는지를 알아내기 위해 수년간 연구해왔다. 룬드 대학(Lund University)의 연구자들은 그것을 크립토크롬(cryptochromes, '숨겨진 색')이라고 불리는 단백질 그룹의 하나인 Cry4에서 발견했다고 믿고 있다.
지구 자기장(Earth’s magnetic field)을 감지하는 수용체는 아마도 새의 눈에 위치하는 것으로 보인다. 룬드 대학의 연구자들은 금화조(zebra finches)의 눈에 있는 단백질들을 연구하다가, 그 중 하나가 다른 단백질과 다르다는 사실을 발견했다. Cry4 단백질만이 하루 내내 서로 다른 조명 조건하에서 일정한 수준을 유지하고 있었다.
다른 크립토크롬은 생물학적 시계에 따라 다르지만, Cry4는 그렇지 않았다. Cry4가 어떻게 자기장 정보를 읽고, 그것에 반응하는 지를 알아내야 하지만, 이것은 오랫동안 지속되어온 수수께끼를 푸는 하나의 단서가 되고 있다. 연구자들은 모든 동물들이 이 능력을 갖고 있다고 믿고 있다. 사람은 자기장을 감지하는 능력이 있을까? 무엇으로 결정되든지, 그것에 대한 또 하나의 잠재적 용도가 있다 : ”이것에 대한 지식은 새로운 네비게이션 시스템을 개발할 때 유용할 수 있다.” Phys.org(2018. 4. 4) 지의 글을 살펴보라.
새들은 크기, 색채, 서식지 등에서 놀라운 다양성을 보여주지만, 모두 비슷한 방식으로 알에서 발생한다. (Credit: Illustra Media (most images)).
새로운 극락조(Bird of Paradise) 종의 화려한 춤. (National Geographic, 2018. 4. 18).
이 기사의 사진을 보라. 기괴한 새의 모습을 볼 수 있을 것이다. 두 개의 밝은 파란 눈과 열려진 부리, 반짝이는 연한 녹청색의 목카라(aqua neck pouch)가 달려있는, 웨스트 파푸아 뉴기니의 제트 블랙 극락조(jet-black bird of paradise)가 짝짓기 춤을 추고 있다. 그것이 정말로 새로운 종인지, 변이인지는 분류학자들이 논의해야할 것이지만, 그 영상은 누구에게나 깊은 인상을 줄 것이다. 공작새뿐만 아니라, 곤충인 공작거미(peacock spiders)는 눈부시게 아름다운 짝짓기 춤을 춘다.
머리 반대쪽에 있는 새의 눈들이 초점을 맞추는 방법.(New Scientist, 2018. 3. 28).
새의 눈은 측면을 바라보고 있다. 그런데 어떻게 입체 시각을 얻을 수 있는 것일까? 이 기사는 새가 초점을 맞출 수 있는 세 가지 방법을 과학자들이 제안했다고 말한다. 이전 연구에 따르면, 일부 새들은 머리를 움직이면서, 이미지의 정지 시간을 최대화하는 뇌 '소프트웨어'를 동원하여, 새가 초점을 맞추고, 시야에서 관심 물체를 놓치지 않는다는 것이었다.(2005. 4. 12).
송골매의 매우 빠른 다이빙은 민첩한 먹이를 잡는데 도움이 된다. (Science Daily, 2018. 4. 12).
세계에서 가장 빠른 새인 송골매(peregrine falcons)는 빠른 다이빙 중에 먹이를 잡을 수 있는데, 먹이가 빠르게 방향을 바꾸고 있을 때조차도 가능하다. 송골매의 위험한 행동은 특별한 신체적 및 인식적 요구를 필요로 한다. 연구팀은 팔콘에 부착시킨 비디오 영상 데이터를 사용하여, 컴퓨터 시뮬레이션을 사용하여 송골매의 사냥 전략을 모방했다. ”연구팀은 시뮬레이션에서 방향전환(steering)을 제어하는 수학 법칙에 대한 최적의 조율(tuning)이 실제 송골매에서의 방향전환 측정과 매우 일치한다는 것을 발견했다.” 자세한 내용은 공개 저널인 PLoS Computational Biology(2018. 4. 12) 지에서 살펴볼 수 있다. Science Daily 지는 일종의 역생체 모방을 언급하고 있었다. ”상세한 컴퓨터 시뮬레이션은 인간이 만든 미사일의 조종 법칙과 동일한 것을 사용하여, 송골매가 먹이를 잡기위해 다이빙 하고 있음을 보여준다.” 송골매가 이러한 고도의 행동을 하기 위해서는 정밀한 안내 시스템이 알 내부에 들어있어야 하며, 접합자 내부에 유전정보로 프로그래밍 되어있어야 한다. 그러한 것들이 모두 무작위적인 돌연변이들로 우연히 어쩌다가 생겨났는가?
과학 논문들에서 발견되는 하나의 법칙이 있다. 그것은 ”과학적 연구가 깊이 상세하게 이루어질수록, 진화론에 대한 언급은 적어진다”는 것이다. 필연적 결과로 ”고도로 복잡한 구조들이 무작위적인 돌연변이들에 의해서 우연히 생겨났다고 말하는 것은 부끄러운 일이 되고 있다”는 것이다.
진화론자들은 대단한 믿음을 갖고 있다.(16 April 2018을 보라). 그들은 수십억 년이 지나면 무기물에서 수많은 종류의 생체분자들이 어떻게든 생겨나고, 정확하게 조립되고, 엄청난 량의 유전정보들과 유전자들도 어떻게든 생겨나고, 그것을 전달하는 시스템과 수선하는 시스템들이 생겨나고, 무수한 무작위적인 돌연변이들이 일어나 알이 생겨났다고 믿고 있다. 그러나 시간은 그런 종류의 믿음을 돕지 않을 것이다.
번역 - 미디어위원회
링크 - https://crev.info/2018/04/information-packed-bird-egg/
출처 - CEH, 2018. 4. 18.
새의 알에 들어있는 정보
: 알의 두께 변화, 자기장 탐지, 극락조, 송골매의 경이
(The Information Packed Into a Bird Egg)
David F. Coppedge
조류의 알(bird’s egg)에는 진화 가설로는 설명할 수 없는 많은 것들이 들어있다.
새의 알을 자세히 살펴보자.
.벌새(Hummingbird)의 알. (David Coppedge)
2017년 6월 27일 CEH는 토마스 히긴슨(Thomas Higginson)의 말을 인용했었다. 그는 1862년에 조류의 알은 ”우주에서 가장 완벽한 것”으로 선정되어야한다고 주장했었다. 최근 알 껍질(eggshells)을 면밀히 조사한 캐나다 몬트리올의 연구자들은 그의 주장이 사실임을 보여주고 있었다. 공개 열람이 가능한 Science Advances(2018. 3. 20) 지의 최근 연구에 따르면, 알 껍질은 동적 구조이기 때문에, 어미 새가 알을 부화시키는 동안은 파손되지 않도록 단단한 반면에, 부화 시기에는 점차적으로 약해져서, 병아리가 깨고 나갈 수 있다는 것이다. Nature(2018. 4. 3) 지는 그 논문을 온라인상에 게재하였고, Phys.org(2018. 3. 30) 지는 알 껍질의 미세 구조를 밝히고 있는 동영상을 보여주고 있었다.
Evolution News & Science Today(2018. 4. 6)와 마찬가지로, World Magazine(2018. 4. 12)도 이 지적설계와 관련된 내용을 담고 있었다. 이 발견은 생체모방 기술로 응용될 수도 있다는 것이다. World Magazine은 ”이러한 발견으로 공학자들은 새로운 성질을 지닌 합성 나노구조를 설계할 수도 있을 것”이라고 말했다. 불행하게도 공동 저자인 맥키는 The Guardian(2018. 3. 30) 지에서 이것을 자연적 과정에 의해 생겨난 것으로 말하고 있었다 :
분명히 그는 논리적으로 충분히 그것에 대해 생각해보지 않았다.
알에서 나오는 것은 무엇인가?
.21일째 부화를 확인하라. (Credit : Illustra Media).
알(egg) 내부에는 한때는 단세포였던 배아가 성장하고 있다. 세포 안에는 성체 조류를 만들어내기 위한 유전 정보 및 후성유전학적 지령이 들어있다. Illustra Media의 영화 ”비행: 천재적인 새들(Flight: The Genius of Birds)”을 보라. 완전한 새에 대한 모든 지시 사항들이 미세한 접합자(zygote, 수정란)에 들어있다. 여기에는 새가 환경으로부터 배울 수 있는 능력도 포함되어 있다. 이것은 접합자가 알보다 더 복잡하며, 성체 조류보다 더 복잡하다는 것을 의미한다. 부화하는 놀라운 새들을 살펴보면서, 알에 들어있을 유전정보의 양을 상상해 보라.
새들은 어떻게 지구 자기장을 감지할 수 있는가? (Science Daily, 2018. 4. 6).
알 내부에는 자기권으로부터 위치를 파악할 수 있는, 네비게이션 장비가 만들어지는 유전정보가 들어있다. 과학자들은 새들이 어떻게 지구 자기장을 감지하여 위치를 파악하는지를 알아내기 위해 수년간 연구해왔다. 룬드 대학(Lund University)의 연구자들은 그것을 크립토크롬(cryptochromes, '숨겨진 색')이라고 불리는 단백질 그룹의 하나인 Cry4에서 발견했다고 믿고 있다.
다른 크립토크롬은 생물학적 시계에 따라 다르지만, Cry4는 그렇지 않았다. Cry4가 어떻게 자기장 정보를 읽고, 그것에 반응하는 지를 알아내야 하지만, 이것은 오랫동안 지속되어온 수수께끼를 푸는 하나의 단서가 되고 있다. 연구자들은 모든 동물들이 이 능력을 갖고 있다고 믿고 있다. 사람은 자기장을 감지하는 능력이 있을까? 무엇으로 결정되든지, 그것에 대한 또 하나의 잠재적 용도가 있다 : ”이것에 대한 지식은 새로운 네비게이션 시스템을 개발할 때 유용할 수 있다.” Phys.org(2018. 4. 4) 지의 글을 살펴보라.
새들은 크기, 색채, 서식지 등에서 놀라운 다양성을 보여주지만, 모두 비슷한 방식으로 알에서 발생한다. (Credit: Illustra Media (most images)).
새로운 극락조(Bird of Paradise) 종의 화려한 춤. (National Geographic, 2018. 4. 18).
이 기사의 사진을 보라. 기괴한 새의 모습을 볼 수 있을 것이다. 두 개의 밝은 파란 눈과 열려진 부리, 반짝이는 연한 녹청색의 목카라(aqua neck pouch)가 달려있는, 웨스트 파푸아 뉴기니의 제트 블랙 극락조(jet-black bird of paradise)가 짝짓기 춤을 추고 있다. 그것이 정말로 새로운 종인지, 변이인지는 분류학자들이 논의해야할 것이지만, 그 영상은 누구에게나 깊은 인상을 줄 것이다. 공작새뿐만 아니라, 곤충인 공작거미(peacock spiders)는 눈부시게 아름다운 짝짓기 춤을 춘다.
머리 반대쪽에 있는 새의 눈들이 초점을 맞추는 방법.(New Scientist, 2018. 3. 28).
새의 눈은 측면을 바라보고 있다. 그런데 어떻게 입체 시각을 얻을 수 있는 것일까? 이 기사는 새가 초점을 맞출 수 있는 세 가지 방법을 과학자들이 제안했다고 말한다. 이전 연구에 따르면, 일부 새들은 머리를 움직이면서, 이미지의 정지 시간을 최대화하는 뇌 '소프트웨어'를 동원하여, 새가 초점을 맞추고, 시야에서 관심 물체를 놓치지 않는다는 것이었다.(2005. 4. 12).
송골매의 매우 빠른 다이빙은 민첩한 먹이를 잡는데 도움이 된다. (Science Daily, 2018. 4. 12).
세계에서 가장 빠른 새인 송골매(peregrine falcons)는 빠른 다이빙 중에 먹이를 잡을 수 있는데, 먹이가 빠르게 방향을 바꾸고 있을 때조차도 가능하다. 송골매의 위험한 행동은 특별한 신체적 및 인식적 요구를 필요로 한다. 연구팀은 팔콘에 부착시킨 비디오 영상 데이터를 사용하여, 컴퓨터 시뮬레이션을 사용하여 송골매의 사냥 전략을 모방했다. ”연구팀은 시뮬레이션에서 방향전환(steering)을 제어하는 수학 법칙에 대한 최적의 조율(tuning)이 실제 송골매에서의 방향전환 측정과 매우 일치한다는 것을 발견했다.” 자세한 내용은 공개 저널인 PLoS Computational Biology(2018. 4. 12) 지에서 살펴볼 수 있다. Science Daily 지는 일종의 역생체 모방을 언급하고 있었다. ”상세한 컴퓨터 시뮬레이션은 인간이 만든 미사일의 조종 법칙과 동일한 것을 사용하여, 송골매가 먹이를 잡기위해 다이빙 하고 있음을 보여준다.” 송골매가 이러한 고도의 행동을 하기 위해서는 정밀한 안내 시스템이 알 내부에 들어있어야 하며, 접합자 내부에 유전정보로 프로그래밍 되어있어야 한다. 그러한 것들이 모두 무작위적인 돌연변이들로 우연히 어쩌다가 생겨났는가?
과학 논문들에서 발견되는 하나의 법칙이 있다. 그것은 ”과학적 연구가 깊이 상세하게 이루어질수록, 진화론에 대한 언급은 적어진다”는 것이다. 필연적 결과로 ”고도로 복잡한 구조들이 무작위적인 돌연변이들에 의해서 우연히 생겨났다고 말하는 것은 부끄러운 일이 되고 있다”는 것이다.
진화론자들은 대단한 믿음을 갖고 있다.(16 April 2018을 보라). 그들은 수십억 년이 지나면 무기물에서 수많은 종류의 생체분자들이 어떻게든 생겨나고, 정확하게 조립되고, 엄청난 량의 유전정보들과 유전자들도 어떻게든 생겨나고, 그것을 전달하는 시스템과 수선하는 시스템들이 생겨나고, 무수한 무작위적인 돌연변이들이 일어나 알이 생겨났다고 믿고 있다. 그러나 시간은 그런 종류의 믿음을 돕지 않을 것이다.
번역 - 미디어위원회
링크 - https://crev.info/2018/04/information-packed-bird-egg/
출처 - CEH, 2018. 4. 18.