오징어에서 작동되고 있는 연속환경추적(CET)
(Molecular Motors of a Squid Show CET in Action)
by Frank Sherwin, D.SC. (HON.)
생물학계에서는 전통적으로 무척추동물은 척추동물보다 단순하고 덜 복잡하다고 생각해 왔다. 그러나 지난 수십 년 동안 이러한 생각은 뒤집혔다.[1, 2] 예를 들어 두족류(Cephalopods, 바다 연체동물)는 높은 수준의 지능과 비교할 수 없는 복잡성으로 연구자들을 계속 놀라게 하고 있다.[3] 이것은 특히 세포 수준에서 이러한 복잡성을 조절하는 유전학과 생화학에서 더욱 그러하다.
미세소관(microtubules, MT)은 사람, 식물, 동물의 세포에서 발견되는 매우 작은 관 같은(tube-like) 구조물이다. 미세소관은 세포 형태(세포 골격, cytoskeleton), 세포 분열(유사 분열, mitosis), 세포 소기관, 및 기타 세포내 구성 요소들이 운동단백질(motor proteins)에 의해서 운반되도록 하는 유연한 비계 배열(array of scaffolds)에 기여한다. 키네신(kinesin)과 디네인(dynein)이라는 두 머리(two-headed)의 운동단백질은 실제로 이 수많은 미세소관을 따라 조율된 방식으로 움직인다.[4]
오징어와 문어와 같은 두족류에서는, 많은 전사체(transcripts, DNA 조각의 RNA 복사본)들의 발현 패턴이 RNA 편집(RNA editing)에 의해 수정된다.
RNA 편집은 단백질의 아미노산 서열을 변경할 수 있는 광범위한 후성유전학적 과정으로, 이를 "재부호화(recoding, 코딩 수정)"라고 한다. 두족류에서는 대부분의 전사체가 재부호화되고 있으며, 재부호화는 표현형 가소성(phenotypic plasticity)을 생성하기 위한 적응 전략이라는 가설이 제기되고 있다. 그러나 동물이 RNA 재부호화를 동적으로 사용하는 방법은 대부분 알려지지 않았다. 우리는 두족류에서 미세소관 운동단백질인 키네신과 디네인의 RNA 재부호화 기능을 조사했다.[5]
후성유전학(epigenetics)은 유전자 코드(genetic code) 자체의 변경보다는, 유전자 발현의 수정에 기인한 생물체의 변화를 연구하는 학문이다.[6, 7]
캘리포니아 샌디에이고 대학의 두 과학자는 새로운 연구에서, "매우 놀랍게도 적어도 일부 두족류가 세포 내에서 단백질 모터들을 재부호화하여, 다양한 수온에 적응할 수 있도록 하는 능력을 갖고 있다는 것이다."[8]
"이 연구는 두족류의 재부호화가 생리적 요구를 지원하고, 변화하는 환경 조건에 적응하기 위해 단백질 기능을 동적으로 조정하는 것이 중요하다는 생각을 뒷받침한다"라고 렉 피터슨(Reck-Peterson, 샌디에이고 의과대학 세포 및 분자의학과 교수)은 말한다. "이 동물들은 주변 환경에 적응하기 위해서, 완전히 독특한 접근 방식을 취하고 있다."[8]
다시 말해, 연안에 사는 이 놀라운 오징어(Doryteuthis opalescens)는 ICR이 주장하는 모델인 연속환경추적(Continuous Environmental Tracking, CET)에 부합하는 기능을 수행하고 있었던 것이다. 연속환경추적(CET)은 생물이 지속적으로 환경을 탐색하여 적응적 변화(발달, 생화학, 생리학 또는 특정 유전자 그룹의 발현을 통해 변형되는 형질)를 발생시키는 한 과정이다. 실제로 논문은 “오징어의 이러한 우수한 사례는 가소성이나 변화를 분석할 수 있는 분자 영역에 대한 귀중한 원천이 될 수 있다"[8]고 말하고 있었다.
사실, 이보다 더 좋은 CET의 예를 찾기는 어려울 것이다. 이 보고서에서 자연선택이라는 말은 언급되어 있지 않았다. 그럴 필요도 없다. 오징어는 다양한 수중 틈새로 이동하고 채울 수 있는 유전적 능력을 갖고 태어났기 때문이다. 오징어는 "변화하는 환경 조건을 감지하는 센서(sensor), 적절한 대응을 선택하는 논리적 메커니즘(logic mechanism), 이러한 대응을 구현하는 작동장치(actuators) 등 최소 세 가지 필수적 요소를 갖추고 있음에 틀림없다."[7] 오징어는 창조주 예수님에 의해서 적응 프로그래밍이 내장된 정교하게 설계된 생물의 한 사례인 것이다. 이러한 적응공학 설계 덕분에 오징어는 광범위한 수온을 포함하여, 특정 환경 변화를 지속적으로 추적하고, 적절하게 스스로 조정할 수 있다.
"이 연구는 오징어가 해수의 온도 변화에 반응하여, 즉석에서 그들의 프로테옴(proteome, 생물체의 전체 단백질 구성)을 조정할 수 있음을 시사한다"라고 렉-피터슨은 말한다. "이것은 이들 바다 외온동물(ectotherms, 체온 유지에 필요한 열을 외부환경에서 공급받는 동물)인 오징어가 광범위한 수온에서 생존하고 번성할 수 있도록 해준다고 추정할 수 있다."[8]
하지만 이러한 설계와 적응은 처음부터 내장되어 있어야만 생존하고 번성할 수 있다. 이러한 공학적 특성은 무작위적인 과정과 오랜 시간에 의해서 우연히 생겨난 것이 아니라, 창조주의 설계를 분명하게 드러내는 것이다.
“측량할 수 없는 큰 일을, 셀 수 없는 기이한 일을 행하시느니라” (욥기 9:10)
References
1. Sherwin, F. 2011. “Relatively Simple.” Acts & Facts. 40 (7): 17.
2. Sherwin, F. Bee Brains Aren’t Pea Brains. Creation Science Update. Posted on ICR.org July 11, 2019, accessed June 11, 2023.
3. Thomas, B. Where Did the Mimic Octopus Get Its Amazing Abilities? Creation Science Update. Posted on ICR.org September 14, 2010, accessed April 26, 2023.
4. Sherwin, F. Muscle Motion Discoveries Challenge Evolutionism. Creation Science Update. Posted on ICR.org February 6, 2013, accessed June 12, 2023.
5. Rangan, K. and S. Reck-Peterson. RNA recoding in cephalopods tailors microtubule motor protein function. Cell. Posted on cell.com June 30, 2011, accessed June 27, 2023.
6. Tomkins, J. Epigenetic Code More Complicated than Previously Thought. Creation Science Update. Posted on ICR.org January 28, 2016, accessed June 12, 2023.
7. Randy J. Guliuzza, P.E., M.D. 2017. Engineered Adaptability: Epigenetics—Engineered Phenotypic 'Flexing'. Acts & Facts. 47 (1).
8. Science Writer. When water temperatures change, the molecular motors of cephalopods do too. Phys.org. Posted on phys.org June 8, 2023, accessed June 11, 2023.
* Dr. Sherwin is science news writer at the Institute for Creation Research. He earned an M.A. in zoology from the University of Northern Colorado and received an Honorary Doctorate of Science from Pensacola Christian College.
*참조 : RNA 편집 : 새로운 차원의 초고도 생물복잡성
https://creation.kr/IntelligentDesign/?idx=1291749&bmode=view
새로운 유전자 없이 적응하는 방법 : 아홀로틀 도롱뇽과 흰파리에서 놀라운 발견
https://creation.kr/Mutation/?idx=10971754&bmode=view
도마뱀의 색깔 변화는 사전에 구축되어 있었다 : 1주일 만에 일어나는 변화는 진화론적 설명을 거부한다.
https://creation.kr/NaturalSelection/?idx=1757451&bmode=view
연어, 구피, 동굴물고기에서 보여지는 연속환경추적(CET)
https://creation.kr/Variation/?idx=12975031&bmode=view
시클리드 물고기에 내재되어 있는 적응형 유전체 공학.
http://creation.kr/Variation/?idx=3759191&bmode=view
연속환경추적(CET), 또는 진화적 묘기?
https://creation.kr/LIfe/?idx=14092341&bmode=view
후성유전학 : 진화가 필요 없는 적응
https://creation.kr/Variation/?idx=13222062&bmode=view
회충의 DNA는 미래를 대비하고 있었다 : 장래 일에 대한 계획은 설계를 가리킨다.
http://creation.kr/IntelligentDesign/?idx=1291773&bmode=view
기생충은 그들의 환경에 적극적으로 적응한다.
https://creation.kr/animals/?idx=11084868&bmode=view
지네의 적응은 경이로운 공학 기술이다
https://creation.kr/animals/?idx=7884258&bmode=view
초파리의 계절에 따른 빠른 유전적 변화 : “적응 추적”은 진화가 아니라, 설계를 가리킨다.
https://creation.kr/Variation/?idx=11298959&bmode=view
사람의 고산지대 거주는 설계에 의한 적응임이 밝혀졌다 : 환경 적응은 자연선택이 아니라, 후성유전학이었다.
https://creation.kr/NaturalSelection/?idx=6163272&bmode=view
재배선되는 생쥐의 뇌는 설계를 가리킨다.
https://creation.kr/animals/?idx=3037692&bmode=view
식물에서 연속환경추적(CET)은 명확해지고 있다
https://creation.kr/Plants/?idx=12440278&bmode=view
식물의 연속적 환경 추적은 설계를 가리킨다.
https://creation.kr/Plants/?idx=4754280&bmode=view
식물의 환경 적응을 위한 유전적 및 후성유전학적 변화
https://creation.kr/Plants/?idx=11516918&bmode=view
씨앗의 수분 센서는 연속환경추적(CET) 모델을 확증하고 있다.
https://creation.kr/Plants/?idx=7675605&bmode=view
식물의 후성유전체 연구는 진화론을 부정한다 : 유전암호의 변경 없이 환경에 적응하는 식물
http://creation.kr/Plants/?idx=1291400&bmode=view
식물의 빠른 변화는 내재된 것임이 입증되었다.
http://creation.kr/Variation/?idx=2268884&bmode=view
수수는 가뭄 시에 유전자 발현을 조절한다 : 식물의 환경변화 추적 및 대응 메커니즘은 설계를 가리킨다.
https://creation.kr/Plants/?idx=3017770&bmode=view
▶ 진화의 메커니즘이 부정되고 있다. - 새로 밝혀진 후성유전학
https://creation.kr/Topic401/?idx=6776421&bmode=view
▶ 오징어
https://creation.kr/Topic102/?idx=6554878&bmode=view
▶ 유전학, 유전체 분석
https://creation.kr/Topic102/?q=YToxOntzOjEyOiJrZXl3b3JkX3R5cGUiO3M6MzoiYWxsIjt9&bmode=view&idx=6487983&t=board
출처 : ICR, 2023. 7. 24.
주소 : https://www.icr.org/article/14193
번역 : 미디어위원회
오징어에서 작동되고 있는 연속환경추적(CET)
(Molecular Motors of a Squid Show CET in Action)
by Frank Sherwin, D.SC. (HON.)
생물학계에서는 전통적으로 무척추동물은 척추동물보다 단순하고 덜 복잡하다고 생각해 왔다. 그러나 지난 수십 년 동안 이러한 생각은 뒤집혔다.[1, 2] 예를 들어 두족류(Cephalopods, 바다 연체동물)는 높은 수준의 지능과 비교할 수 없는 복잡성으로 연구자들을 계속 놀라게 하고 있다.[3] 이것은 특히 세포 수준에서 이러한 복잡성을 조절하는 유전학과 생화학에서 더욱 그러하다.
미세소관(microtubules, MT)은 사람, 식물, 동물의 세포에서 발견되는 매우 작은 관 같은(tube-like) 구조물이다. 미세소관은 세포 형태(세포 골격, cytoskeleton), 세포 분열(유사 분열, mitosis), 세포 소기관, 및 기타 세포내 구성 요소들이 운동단백질(motor proteins)에 의해서 운반되도록 하는 유연한 비계 배열(array of scaffolds)에 기여한다. 키네신(kinesin)과 디네인(dynein)이라는 두 머리(two-headed)의 운동단백질은 실제로 이 수많은 미세소관을 따라 조율된 방식으로 움직인다.[4]
오징어와 문어와 같은 두족류에서는, 많은 전사체(transcripts, DNA 조각의 RNA 복사본)들의 발현 패턴이 RNA 편집(RNA editing)에 의해 수정된다.
RNA 편집은 단백질의 아미노산 서열을 변경할 수 있는 광범위한 후성유전학적 과정으로, 이를 "재부호화(recoding, 코딩 수정)"라고 한다. 두족류에서는 대부분의 전사체가 재부호화되고 있으며, 재부호화는 표현형 가소성(phenotypic plasticity)을 생성하기 위한 적응 전략이라는 가설이 제기되고 있다. 그러나 동물이 RNA 재부호화를 동적으로 사용하는 방법은 대부분 알려지지 않았다. 우리는 두족류에서 미세소관 운동단백질인 키네신과 디네인의 RNA 재부호화 기능을 조사했다.[5]
후성유전학(epigenetics)은 유전자 코드(genetic code) 자체의 변경보다는, 유전자 발현의 수정에 기인한 생물체의 변화를 연구하는 학문이다.[6, 7]
캘리포니아 샌디에이고 대학의 두 과학자는 새로운 연구에서, "매우 놀랍게도 적어도 일부 두족류가 세포 내에서 단백질 모터들을 재부호화하여, 다양한 수온에 적응할 수 있도록 하는 능력을 갖고 있다는 것이다."[8]
"이 연구는 두족류의 재부호화가 생리적 요구를 지원하고, 변화하는 환경 조건에 적응하기 위해 단백질 기능을 동적으로 조정하는 것이 중요하다는 생각을 뒷받침한다"라고 렉 피터슨(Reck-Peterson, 샌디에이고 의과대학 세포 및 분자의학과 교수)은 말한다. "이 동물들은 주변 환경에 적응하기 위해서, 완전히 독특한 접근 방식을 취하고 있다."[8]
다시 말해, 연안에 사는 이 놀라운 오징어(Doryteuthis opalescens)는 ICR이 주장하는 모델인 연속환경추적(Continuous Environmental Tracking, CET)에 부합하는 기능을 수행하고 있었던 것이다. 연속환경추적(CET)은 생물이 지속적으로 환경을 탐색하여 적응적 변화(발달, 생화학, 생리학 또는 특정 유전자 그룹의 발현을 통해 변형되는 형질)를 발생시키는 한 과정이다. 실제로 논문은 “오징어의 이러한 우수한 사례는 가소성이나 변화를 분석할 수 있는 분자 영역에 대한 귀중한 원천이 될 수 있다"[8]고 말하고 있었다.
사실, 이보다 더 좋은 CET의 예를 찾기는 어려울 것이다. 이 보고서에서 자연선택이라는 말은 언급되어 있지 않았다. 그럴 필요도 없다. 오징어는 다양한 수중 틈새로 이동하고 채울 수 있는 유전적 능력을 갖고 태어났기 때문이다. 오징어는 "변화하는 환경 조건을 감지하는 센서(sensor), 적절한 대응을 선택하는 논리적 메커니즘(logic mechanism), 이러한 대응을 구현하는 작동장치(actuators) 등 최소 세 가지 필수적 요소를 갖추고 있음에 틀림없다."[7] 오징어는 창조주 예수님에 의해서 적응 프로그래밍이 내장된 정교하게 설계된 생물의 한 사례인 것이다. 이러한 적응공학 설계 덕분에 오징어는 광범위한 수온을 포함하여, 특정 환경 변화를 지속적으로 추적하고, 적절하게 스스로 조정할 수 있다.
"이 연구는 오징어가 해수의 온도 변화에 반응하여, 즉석에서 그들의 프로테옴(proteome, 생물체의 전체 단백질 구성)을 조정할 수 있음을 시사한다"라고 렉-피터슨은 말한다. "이것은 이들 바다 외온동물(ectotherms, 체온 유지에 필요한 열을 외부환경에서 공급받는 동물)인 오징어가 광범위한 수온에서 생존하고 번성할 수 있도록 해준다고 추정할 수 있다."[8]
하지만 이러한 설계와 적응은 처음부터 내장되어 있어야만 생존하고 번성할 수 있다. 이러한 공학적 특성은 무작위적인 과정과 오랜 시간에 의해서 우연히 생겨난 것이 아니라, 창조주의 설계를 분명하게 드러내는 것이다.
“측량할 수 없는 큰 일을, 셀 수 없는 기이한 일을 행하시느니라” (욥기 9:10)
References
1. Sherwin, F. 2011. “Relatively Simple.” Acts & Facts. 40 (7): 17.
2. Sherwin, F. Bee Brains Aren’t Pea Brains. Creation Science Update. Posted on ICR.org July 11, 2019, accessed June 11, 2023.
3. Thomas, B. Where Did the Mimic Octopus Get Its Amazing Abilities? Creation Science Update. Posted on ICR.org September 14, 2010, accessed April 26, 2023.
4. Sherwin, F. Muscle Motion Discoveries Challenge Evolutionism. Creation Science Update. Posted on ICR.org February 6, 2013, accessed June 12, 2023.
5. Rangan, K. and S. Reck-Peterson. RNA recoding in cephalopods tailors microtubule motor protein function. Cell. Posted on cell.com June 30, 2011, accessed June 27, 2023.
6. Tomkins, J. Epigenetic Code More Complicated than Previously Thought. Creation Science Update. Posted on ICR.org January 28, 2016, accessed June 12, 2023.
7. Randy J. Guliuzza, P.E., M.D. 2017. Engineered Adaptability: Epigenetics—Engineered Phenotypic 'Flexing'. Acts & Facts. 47 (1).
8. Science Writer. When water temperatures change, the molecular motors of cephalopods do too. Phys.org. Posted on phys.org June 8, 2023, accessed June 11, 2023.
* Dr. Sherwin is science news writer at the Institute for Creation Research. He earned an M.A. in zoology from the University of Northern Colorado and received an Honorary Doctorate of Science from Pensacola Christian College.
*참조 : RNA 편집 : 새로운 차원의 초고도 생물복잡성
https://creation.kr/IntelligentDesign/?idx=1291749&bmode=view
새로운 유전자 없이 적응하는 방법 : 아홀로틀 도롱뇽과 흰파리에서 놀라운 발견
https://creation.kr/Mutation/?idx=10971754&bmode=view
도마뱀의 색깔 변화는 사전에 구축되어 있었다 : 1주일 만에 일어나는 변화는 진화론적 설명을 거부한다.
https://creation.kr/NaturalSelection/?idx=1757451&bmode=view
연어, 구피, 동굴물고기에서 보여지는 연속환경추적(CET)
https://creation.kr/Variation/?idx=12975031&bmode=view
시클리드 물고기에 내재되어 있는 적응형 유전체 공학.
http://creation.kr/Variation/?idx=3759191&bmode=view
연속환경추적(CET), 또는 진화적 묘기?
https://creation.kr/LIfe/?idx=14092341&bmode=view
후성유전학 : 진화가 필요 없는 적응
https://creation.kr/Variation/?idx=13222062&bmode=view
회충의 DNA는 미래를 대비하고 있었다 : 장래 일에 대한 계획은 설계를 가리킨다.
http://creation.kr/IntelligentDesign/?idx=1291773&bmode=view
기생충은 그들의 환경에 적극적으로 적응한다.
https://creation.kr/animals/?idx=11084868&bmode=view
지네의 적응은 경이로운 공학 기술이다
https://creation.kr/animals/?idx=7884258&bmode=view
초파리의 계절에 따른 빠른 유전적 변화 : “적응 추적”은 진화가 아니라, 설계를 가리킨다.
https://creation.kr/Variation/?idx=11298959&bmode=view
사람의 고산지대 거주는 설계에 의한 적응임이 밝혀졌다 : 환경 적응은 자연선택이 아니라, 후성유전학이었다.
https://creation.kr/NaturalSelection/?idx=6163272&bmode=view
재배선되는 생쥐의 뇌는 설계를 가리킨다.
https://creation.kr/animals/?idx=3037692&bmode=view
식물에서 연속환경추적(CET)은 명확해지고 있다
https://creation.kr/Plants/?idx=12440278&bmode=view
식물의 연속적 환경 추적은 설계를 가리킨다.
https://creation.kr/Plants/?idx=4754280&bmode=view
식물의 환경 적응을 위한 유전적 및 후성유전학적 변화
https://creation.kr/Plants/?idx=11516918&bmode=view
씨앗의 수분 센서는 연속환경추적(CET) 모델을 확증하고 있다.
https://creation.kr/Plants/?idx=7675605&bmode=view
식물의 후성유전체 연구는 진화론을 부정한다 : 유전암호의 변경 없이 환경에 적응하는 식물
http://creation.kr/Plants/?idx=1291400&bmode=view
식물의 빠른 변화는 내재된 것임이 입증되었다.
http://creation.kr/Variation/?idx=2268884&bmode=view
수수는 가뭄 시에 유전자 발현을 조절한다 : 식물의 환경변화 추적 및 대응 메커니즘은 설계를 가리킨다.
https://creation.kr/Plants/?idx=3017770&bmode=view
▶ 진화의 메커니즘이 부정되고 있다. - 새로 밝혀진 후성유전학
https://creation.kr/Topic401/?idx=6776421&bmode=view
▶ 오징어
https://creation.kr/Topic102/?idx=6554878&bmode=view
▶ 유전학, 유전체 분석
https://creation.kr/Topic102/?q=YToxOntzOjEyOiJrZXl3b3JkX3R5cGUiO3M6MzoiYWxsIjt9&bmode=view&idx=6487983&t=board
출처 : ICR, 2023. 7. 24.
주소 : https://www.icr.org/article/14193
번역 : 미디어위원회