LIBRARY

KOREA  ASSOCIATION FOR CREATION RESEARCH

창조설계

미디어위원회
2023-05-22

멋진 '날아다니는' 개구리

(The magnificent ‘flying’ frog)

by Don Batten


     날아다니는 곤충, 새, 포유류, 파충류 등은 잘 알려져 있다. 하지만 하늘을 나는 개구리(flying frog)는 들어보았는가?

가장 유명한 것은 '월리스 날개구리(Wallace’s Flying Frog, Rhacophorus nigropalmatus)이다.[1] 날개구리속(Rhacophorus)의 44종은 사하라 사막 이남 아프리카와 인도에서 필리핀까지 동남아시아에 널리 분포한다.[2] 이들은 아프리카-아시아 관목개구리류(African-Asian shrub or tree frogs)인 산청개구리과(Rachophoridae)에 속하는데, 21속 400여 종이 있다.[3]

.월리스날개구리(Wallace’s Flying Frog). <BIOSPHOTO / Alamy Stock Photoflying-frog>


오스트레일리아청개구리(Australian green tree frog, Litoria caerulea)를 포함하는 또 다른 청개구리과(family Hylidae)에도 날아다니는 종들을 흔히 볼 수 있다. 중앙아메리카에서도 이러한 종들 중 하나가 보고되었다.[4] 날아다니는 개구리들은 380종이 넘는 것으로 알려져 있다.[5]


하나님은 나무에 사는 이 개구리들이 타락 이후 세계의 다양한 환경에서 적응할 수 있도록, 유전적 능력을 내장시켜 창조하셨다.


월리스날개구리는 놀라울 정도로 아름다운 외모를 가지고 있으며(사진 참조), 커다란 몸체를 갖고 있는데, 몸길이가 10cm(4인치)까지 자랄 정도로 크다. 열대우림의 중간 높이에서 사는 것을 선호하며, 짝짓기와 알을 낳을 때만 내려온다. 물웅덩이 위에 매달린 거품(bubble)이나 거품 둥지(foam nest)에 알을 낳는다. 알이 부화하면, 올챙이는 아래 물웅덩이로 내려가 성장한다.

그들은 '날아다니는 개구리'라고 불리지만, 실제로는 날지 않고 활공(glide)을 하며, 하강 각도가 45º(1:1) 미만이다. 그러한 활공이라면, 항공기는 추락으로 이어질 수 있지만, 개구리는 몸무게가 가벼워 받는 충격을 줄일 수 있다. 월리스날개구리는 최대 15m까지 활공할 수 있다. 또한 연못이나 큰 나뭇잎과 같은 착륙 지점을 선택하도록 몸을 조정할 수 있기 때문에, 착륙 시의 충격을 줄인다.

활공 능력은 다양하다. 다른 많은 나무에 사는 청개구리들은 45도 이상의 하강 각도를 갖고 있어서, 낙하산(parachute)으로 말해진다.

활공하는 종들은 모두 활공을 용이하도록 해주는 비슷한 특징들을 갖고 있다 : 커다란 발가락 패드(또한 이것은 날지 않는 청개구리에서 등반에 도움이 된다), 긴 발가락, 발가락 사이의 물갈퀴, 팔다리를 따라 펼쳐진 피부 덮개 등이 그것이다. 또한 긴 몸체도 도움이 된다.[6] 비슷한 특징을 가진 활강하는 종들은 서로 다른 곳에서 사는, 서로 다른 과(속)에서 발견된다. 이는 활공을 위한 구조들을 생성하기 위한 유전적 '스위치'의 활성화 가능성을 시사한다(핀치새의 부리가 어떻게 다양하게 설계되었는 지에 대한 우리의 이전 글을 참조하라.) [7].


자연선택은 개구리가 창조될 때부터 개구리에 내재된 다양성을 미세조정하기 위해 작용했을 수 있다.


따라서 하나님께서는 타락 이후 세계의 다양한 환경에 적응할 수 있는 유전적 능력을 내장시킨 채로, 나무에 사는 개구리를 창조하셨다. 이것은 개구리를 프로그램화한(지적으로 설계하신) 창조주의 선견지명을 보여주는 증거이다.

날개구리는 '점프력'이 있다. 그들은 위협이 있는 경우에 뛰어내린다. 먹히는 것보다 조금 위험하긴 하지만, 점프하는 것이 더 낫다! 고양이가 높은 곳에서 뛰어내릴 때처럼, 개구리는 자연스럽게 다리를 '벌려' 하강 속도를 늦추고, 나뭇가지를 붙잡기 위해 손을 뻗는다.

다양한 신체 형태를 만들 수 있게 된 날개구리를 통해, 우리는 개구리의 창조 이후 '종'들이 어떻게 다양해졌는지를 알 수 있다.

더 오래 활공하는 것이 유리한 환경적 적소(niches)가 있었을 것이다. 예를 들어, 나무를 기어오르는 뱀이 개구리를 잡아먹으려 할 때, 멀리 이동할 수 있는 효율적인 탈출 방법은 생존에 도움이 되었을 것이다. 이는 활공을 가능하게 하는 특징의 유전자(대립유전자, alleles)가 다음 세대로 전달되도록 하는데 도움이 되었을 것이다.

따라서 자연선택은 개구리가 창조될 때부터 개구리에 내재되어 있었던 다양성을 미세 조정하며 작용했을 수 있다.

이 아름다운 개구리에서 볼 수 있는 생물의 놀라운 다양성은 하나님의 창조에 대해 많은 것을 말해주며, 그분에게 영광을 돌리게 한다.


References and notes

1. Alfred Russel Wallace discovered the first scientifically documented flying frog. A contemporary of Darwin, Wallace proposed a theory of biological evolution before Darwin; creation.com/jungle-hero, 10 Dec 2013. 

2. ‘Rhacophorus’, Amphibian Species of the World 5.6, American Museum of Natural History, 2013; amphibiansoftheworld.amnh.org. 

3. AmphibiaWeb—Rhacophoridae; amphibiaweb.org/lists/Rhacophoridae.shtml. 

4. Entry on Ecnomiohyla armiliaria, amphibiaweb.org.

5. Naish, D., There is so much more to flying frogs than flying, blogs.scientificamerican.com, 11 Jan 2015. 

6. Emerson, S.B., Travis, J., and Koehl, M.A.R., Functional complexes and additivity in performance: A test case with ‘flying’ frogs, Evolution 44(8): 2153–57, 1990. 

7. Lightner, J.K., Finch beaks point to a Creator who provides, J. Creation 26(2):8–10, 2012; creation.com/finch-beaks. 


Related Articles

In leaps and bounds

Putting a frog in a blender?

From a frog to a … frog!

Amphibian responses to the 1980 eruption of Mount St Helens—implications for Noahic Flood recovery

Cane toads on the road


Further Reading

Design Features Questions and Answers

Natural Selection Questions and Answers


*참조 : ▶ 개구리

https://creation.kr/Topic102/?q=YToxOntzOjEyOiJrZXl3b3JkX3R5cGUiO3M6MzoiYWxsIjt9&bmode=view&idx=6506186&t=board


출처 : Creation 44(3):26–27, July 2022

주소 : https://creation.com/flying-frog

번역 : 미디어위원회

미디어위원회
2023-05-17

철새들은 자기 GPS를 사용하여 항해한다

(Migratory birds use magnetic GPS)

by Jonathan Sarfati


 

    철새들의 장거리 이동은 매혹적이다. 새들은 어떻게 전 세계를 오가는 길을 찾을 수 있는 것일까? 수년 동안 지구 자기장(earth’s magnetic field)에 대한 인식은 이주를 가능하게 하는 주요 단서 중 하나로 추정되어 왔다.[1]

이제 오스트리아의 국제 연구팀은 개개비(reed warblers)에 대한 독창적인 실험을 통해, 우리의 지식을 발전시켰다.[2]

.개개비(reed warbler) <© SanderMeertinsmigratory-bird>

 

지구 자기장은 나침반의 방향을 제공하는 것으로 가장 잘 알려져 있다. 하지만 방향만으로는 충분하지 않다. 새가 원하는 방향으로 얼마나 멀리 가야할지 알 필요가 있지 않겠는가? 실제로 자기장에는 더 많은 정보가 들어있다.(아래 그림 참조). 


자기 강도 : 자기적 인력의 세기. 일반적으로 극 근처에서 가장 강하고, 적도 근처에서 가장 약하다.

편각(declination) : 자기북극은 지리적 북극과 같지 않다. 따라서 자기장은 진북을 기준으로 편향되며, 이 각도를 편각이라고 한다.

경사(inclination) : 자기 적도를 제외하고는 자기장은 수평(지구 표면과 평행)이 아니다. 오히려 북반구에서는 아래쪽으로, 자북극에서는 수직 아래로, 경사(기울어짐)를 이룬다. 남쪽으로 갈수록 경사는 위쪽으로 회전하여, 자남극에서 수직 위로 기울어진다. 


.왼쪽 : 빨간색 화살표-자기장의 방향. 파란색 화살표-지리적 좌표.

.오른쪽 : 빨간색 화살표-자기장 벡터. 파란색 글자-지리적 좌표와 비교한 세 가지 지자기 매개변수. <Chymæra, Wikimedia Commons, 2011.magnetic-field>

 

방향만으로는 충분하지 않다. 새는 원하는 방향으로 얼마나 멀리 가야할지를 알 필요가 있다.

자연 환경에서 이 '자기 GPS'는 훌륭한 내비게이션 도구이다.

 

위치마다 이 세 가지 매개변수의 조합이 다르다. 새가 이 매개변수들을 감지할 수 있다면, 지표면에서 자신이 어디에 위치하는지를 대략 알 수 있을 것이다. 그래서 연구자들은 여름철에 오스트리아 근처에서 둥지를 트는 철새 개개비를 대상으로, 이를 시험해 보았다. 가을이 되면 개개비들은 아프리카 사하라 사막 이남의 겨울 서식지로 이동을 시작한다. 하지만 연구자들은 실제 위치에서 북동쪽으로 2,500km 떨어져 있는 러시아 네프테캄스크(Neftekamsk)의 자기장과 동등한 자기장을 만들고 이들을 놓아주었다. 이 도시가 선택된 이유는 두 가지이다 : 첫째, 새들이 가야하는 곳에서 거리가 매우 멀고, 둘째, 새들이 전형적인 이동 경로와는 매우 다른 방향으로 날아갈 수 있도록 만들어줄 수 있기 때문이었다.

물론 다른 시각적 신호들에도 불구하고, 새들은 네프테캄스크에서 출발한 것처럼 반응했다.[3] 연구자 중 한 명인 웨일즈 뱅거대학(Bangor University)의 리처드 홀랜드(Richard Holland)는 다음과 같이 설명했다:

이것은 자기장이 그들에게 반드시 있어야만 하는 하나의 중요한 단서임을 보여준다. 다른 모든 것들이 그들에게 정상적인 경로에 있음을 말하고 있었음에도, 그들은 마치 북동쪽으로 2,500km 위치를 벗어난 것처럼 반응했다.

  .둥지에 놓여있는 개개비 알. 각 알에는 놀라운 내비게이션 시스템을 위한 '프로그램'이 들어 있다. <©Yuriy Balagula Wikimedia Commonsnest>

 

자연 환경에서 이 '자기 GPS'는 훌륭한 항해(navigation) 도구이다. 홀랜드 박사는 이렇게 설명한다 : "그래서 우리는 정말로 깔끔한 데카르트 좌표 지도(Cartesian coordinate map)를 갖게 되었다. 이것은 새들이 수행하고 있다고 생각되는 놀라운 능력의 이론적 기반이 되는 것이다.“

물론 새들은 자신이 수행하고 있는 일과 관련된 이러한 고도로 복잡한 개념을 알지 못한다. 이러한 독창적인 프로그래밍은 이것을 설계하시고 장착시키신 마스터 프로그래머를 가리키고 있는 것이다.

 

References and notes

1. Catchpoole, D., Wings on the wind: How do migrating birds know exactly when, and where, to go? Creation 23(4):16–23, 2001; creation.com/migration.

2. Kishkinev, D. and 6 others, Navigation by extrapolation of geomagnetic cues in a migratory songbird, Current Biology 31(7):1563–1569, 21 Apr 2021.

3. Fritts, R., Lost birds rely on earth’s magnetic field to get back on track, audobon.org, 4 Mar 2021.

 

*참조 : 경도를 측정하며 항해하는 새들

https://creation.kr/animals/?idx=1291024&bmode=view

뻐꾸기의 놀라운 1만2000km의 장거리 이주

https://creation.kr/animals/?idx=3957057&bmode=view

북극제비갈매기의 경이로운 항해 : 매년 7만km씩, 평생 달까지 3번 왕복하는 거리를 여행하고 있었다.

https://creation.kr/animals/?idx=1291068&bmode=view

철새들의 장거리 비행에 있어서 새로운 세계기록 : 흑꼬리도요는 11,500km를 논스톱으로 날아갔다.

https://creation.kr/animals/?idx=1291019&bmode=view

철새의 논스톱 비행 신기록(11,679km)이 수립되었다!

https://creation.kr/animals/?idx=1291040&bmode=view

철새들의 놀라운 비행 능력 : 큰제비는 7500km를 13일 만에 날아갔다.

https://creation.kr/animals/?idx=1291047&bmode=view

경이로운 테크노 부리 : 비둘기는 최첨단 나침반을 가지고 있었다.

https://creation.kr/animals/?idx=1291004&bmode=view

새들의 장거리 항해와 자기장 감지에 이용되는 화학 반응

https://creation.kr/animals/?idx=1291064&bmode=view

새들의 경이로운 능력은 예상을 뛰어넘는다.

https://creation.kr/animals/?idx=7445051&bmode=view

새의 알에 들어있는 정보 : 알의 두께 변화, 자기장 탐지, 극락조, 송골매의 경이

https://creation.kr/animals/?idx=1291220&bmode=view

새들은 어떻게 그들의 항해 지도를 조정하는가?

https://creation.kr/animals/?idx=1290956&bmode=view

잠자리들의 경이로운 항해 능력 : 바다를 건너 14,000~18,000 km를 이동한다.

https://creation.kr/animals/?idx=1291056&bmode=view

나방의 놀라운 비행과 나침반

https://creation.kr/animals/?idx=12811646&bmode=view

초파리의 경이로운 비행 기술이 밝혀졌다.

https://creation.kr/animals/?idx=4828231&bmode=view

벌처럼 될 수 있을까? : 놀라운 벌의 비행과 항법 장치들

https://creation.kr/animals/?idx=1290987&bmode=view

제왕나비에서 경도 측정 시계가 발견되었다.

https://creation.kr/animals/?idx=1291060&bmode=view

바다거북은 자기장을 이용하여 항해한다.

https://creation.kr/animals/?idx=1291002&bmode=view

연어에서 발견된 정교한 나침반 세포

https://creation.kr/animals/?idx=1291132&bmode=view

여우는 자기장을 감지할 수 있는가?

https://creation.kr/animals/?idx=1291156&bmode=view

소의 자기장 감지능력과 진화론

https://creation.kr/animals/?idx=1291043&bmode=view

소와 사슴들은 남북 방향으로 정렬하는 경향이 있다 : 새, 물고기, 거북, 박쥐, 소, 사슴...등의 자기장 감지능력

https://creation.kr/animals/?idx=1291039&bmode=view

포유동물의 놀라운 능력들 : 바다표범의 GPS, 생쥐의 후각, 동물들의 시간 관리

https://creation.kr/animals/?idx=1291179&bmode=view


출처 : Creation 44(2):16–17, April 2022

주소 : https://creation.com/birds-migratory-gps

번역 : 미디어위원회

미디어위원회
2023-04-12

흔히 보는 새들도 과학자들을 놀라게 한다. 

: 박새의 기억력, 벌새의 휴면, 까마귀의 재귀 인지능력   

(Common Birds Astound Scientists)

David F. Coppedge


  정원이나 마을에서 흔히 볼 수 있는 새들도 정말로 놀랍다. 

  생물학에서 가장 놀라운 사실들은 종종 우리 주변에 있으며, 우리는 그것을 깨닫지 못한다.


놀라운 기억력을 지진 작은 새의 뇌 과학 (Duke University, 2023. 3. 24). 정원에서 발견되는 작은 새들은 너무 흔해서, 우리는 잘 알아차리지 못한다. 하지만 이들은 인간과 비교할 수 없는 놀라운 기억력을 갖고 있을지도 모른다. 검은머리박새(black-capped chickadee)는 하루에 수천 개의 씨앗들을 숨겨두고, 각 씨앗이 어디에 저장되어 있는지 기억할 수 있다. 소피 콕스(Sophie Cox)는 "검은머리박새는 주변 환경에서 먹이를 저장한 위치를 기억하는 놀라운 능력을 갖고 있다"라고 말한다. "또한 그들은 작고, 빠르게 날 수 있다." 듀크 대학(Duke University) 과학자들은 그 새의 기억력에 놀라움을 금치 못했고, 실험에 나섰다.

그들은 숨겨둔 먹이의 위치뿐만 아니라, 각 은신처의 다른 특징까지 기억하는데, 그 모든 정보를 외우고 이동하는 데에 단 몇 초밖에 걸리지 않는 경우가 많았다. 아로노프(Aronov)에 따르면, 한 마리의 새가 하루에 최대 5,000개의 먹이를 저장하는 것으로 알려져 있다! 하지만 어떻게 그런 일을 수행할 수 있을까?

박새는 인간과 마찬가지로 뇌의 해마(hippocampus)에 의존하여 일시적 기억을 형성하며, 먹이를 저장하지 않는 비슷한 크기의 새에 비해, 먹이를 저장하는 새의 해마는 훨씬 더 크다.

하지만 사진사 없이 카메라의 메모리 카드가 사진을 저장할 수 없는 것처럼, 해마만으로는 사물을 기억할 수 없다. 아로노프의 연구팀은 씨앗을 숨길 수 있는 다양한 장소가 있는 "박새의 인체공학에 최적화된" 실험장을 마련했다. 과학자들은 새들이 씨앗을 넣어두는 곳을 아래에서 관찰할 수 있도록 실험장을 만들었다. 그런 다음 실험용 새에게 헬멧을 씌워, 어떤 뉴런이 활성화되는지를 테스트했다.

아로노프는 단 한 번의 숨겨둠만으로도 새로운, 지속되는, 장소적 고유 패턴을 만들어낼 수 있었다고 말한다. 그 의미는 놀랍다. 박새는 수천 개의 장소에 수천 개의 은닉 순간을 저장했다가, 먹이가 필요할 때마다 그 기억을 마음대로 불러올 수 있다는 것이다.

과학자들은 데이터를 수집한 후에도, 작은 새의 기억력이 어떻게 작동되는지 아직 이해하지 못하고 있었다. 새가 각 은닉처의 모습을 시각화할 수 있었던 것일까? 마지막 말은 이것이었다 : "과학자들은 확실히 알 수 없었다.“

.검은머리박새(black-capped chickadee) <Wikimedia Commons>


벌새는 추운 날씨에서 살아남기 위해, 다양한 방법으로 휴면상태를 사용한다 (Washington University, 2023. 3. 15). 남부 주에 벌새(hummingbirds)의 계절이 찾아왔다. 많은 사랑을 받고 있는 이 작은 새는 꿀을 빠는 긴 혀와 같은 많은 공학적 능력을 보여준다.(see Illustra film).

워싱턴 대학의 과학자들은 콜롬비아에 서식하는 168종의 벌새들 중 일부를 연구했다. 한 연구자에 따르면, 벌새는 짧은 수면(power nap)과 동면(hibernation) 사이의 상태로 ‘휴면상태(torpor, 토퍼, 무기력, 혼수상태)’라 불리는 신진대사가 저하되는 상태에 빠질 수 있다는 것이다. 연구자들은 추운 날씨에 작은 새들이 생존에 필요한 휴면상태의 양을 정확하게 조절할 수 있다는 사실을 발견했다.

"이전 연구는 동면이 신진대사를 최소 수준으로 완전히 차단하는 방법이라고 제안됐었다"라고 볼드윈(Baldwin)은 말했다. "우리의 연구 결과는 동물이 휴면상태에 빠졌을 때, 환경에 맞추어 휴면상태를 보정할 수 있는 다양한 옵션이 있다는 증거를 발견하였다."

예를 들어, 연구자들은 벌새가 깊은 휴면상태에 빠지거나, 얕은 휴면상태에 빠질 수도 있고, 몇 시간 또는 밤새도록 휴면상태에 머물 수 있으며, 일출 몇 시간 전, 또는 몇 분 전에 휴면상태에서 깨어나기 시작할 수 있다는 것을 발견했다. 휴면상태에서 깨어날 때 일부 벌새는 몸을 서서히 따뜻하게 만드는 반면, 다른 벌새는 빠르게 정상 체온으로 돌아온다.


과학자들은 까마귀가 인간과 일부 영장류에게만 있다고 생각되는, 재귀(recursion) 인지능력이 있는 것을 발견했다.(Earthly Mission, 2023. 4. 4). 까마귀(crows)는 볼품없는 외관과  사랑스럽지 않은 울음소리를 갖고 있지만, 다른 부문에서는 메달을 받을 자격이 있다. 과학자들이 까마귀가 재귀(recursion) 인지능력이 있음을 발견하였다.

재귀(recursion)란 무엇일까? 재귀는 더 큰 연쇄(sequences)에서 쌍을 이루는 요소를 인식하는 능력으로, 인간의 주요 상징적 특징들 중에서 하나로 주장되어 온 것이다. 다음 예를 생각해 보라 : "고양이가 쫓았던 쥐가 도망쳤다." 이 문구는 약간 혼란스럽지만, 성인이라면 쥐가 달리고 고양이가 쫓아갔다는 것을 쉽게 알아챌 수 있다. 재귀란 바로 '쥐'를 '도망쳤다'로, '고양이'를 '쫓았다'로 짝을 짓는 것이다.

튀빙겐 대학(University of Tübingen) 과학자들의 실험에 따르면, 까마귀는 원숭이보다 재귀를 더 잘 할 수 있는 것으로 나타났다. 하지만 새와 원숭이는 진화계통나무에서 멀리 떨어져 있는데, 어떻게 그런 일이 일어났을까?

-------------------------------------------------------------------


늘 그렇듯이 과학자들이 생물들의 세부 사항을 설명할 때, 진화에 대해서는 할 말이 거의 없어 보인다. 이 세 기사에서 유일한 예외는 벌새에 대한 지나가는 언급이었다. 다윈의 수석 이야기 작가인 볼드윈은 말했다 : "벌새가 휴면상태를 사용하는 것과, 높은 고도에서 버틸 수 있는 능력 중 어느 것이 먼저 진화했는지는 알 수 없지만, 휴면상태를 사용할 준비가 된 것은 산악 서식지를 진화적으로 정복한 것과 관련 있을 것으로 생각된다."


우리는 새들에게 감사하고, 새들을 더 많이 관찰해야 한다. 새들은 다양하고 매혹적이다. 때때로 그들은 성가신 존재가 될 수도 있다. 나는 이번 계절에 다시 잔디밭에 씨를 뿌리기 위해서 두 번이나 시도했지만, 어떤 노력을 기울여도 새들은 씨앗을 찾아냈다. 나는 토핑 흙으로 씨앗을 덮었고, 산들바람에 반짝이는 장식품도 걸었고, 가짜 부엉이도 달았다. 스프링클러를 더 자주 틀었다. 마당 일부에 새 그물망도 설치했다. 꽤 잘 작동했지만, 작은 참새들은 작은 구멍을 찾아서 안으로 들어갈 수 있었다. 밤낮을 가리지 않고 10~20마리의 새들이 마당을 쪼아대며 모든 씨앗들을 찾아내는 것을 종종 발견하곤 했다. 이렇게 작은 씨앗을 골라내어 연달아 빠르게 쪼아 먹어치우려면, 눈과 후각이 좋아야 한다. 내가 어떤 노력을 기울여도, 그들은 항상 나를 능가했다. 짜증이 났지만, 그들의 기술에 감탄하지 않을 수 없었다! 귀엽기도 하고 말이다.


*참조 : 새들로 인해 놀라고 있는 진화론자들. : 공작, 앵무새, 벌새, 타조에 대한 진화 이야기

https://creation.kr/animals/?idx=1291178&bmode=view

동물들은 생각했던 것보다 훨씬 현명할 수 있다 : 벌, 박쥐, 닭, 점균류에서 발견된 놀라운 지능과 행동

https://creation.kr/animals/?idx=1291204&bmode=view

앵무새의 박자를 맞추는 능력은 어떻게 진화되었는가?

https://creation.kr/Mutation/?idx=1289790&bmode=view

벌새의 물질 대사는 진화론적 공학기술의 경이?

https://creation.kr/animals/?idx=1291153&bmode=view

벌새와 박쥐는 빠른 비행에 특화되어 있었다.

https://creation.kr/animals/?idx=1291207&bmode=view

까마귀는 도구를 얻기 위해 도구를 사용한다 : 도구를 사용하는 동물들의 지능은 어디서 왔는가?

https://creation.kr/animals/?idx=1291018&bmode=view

영리한 까마귀에 대한 이솝 우화는 사실이었다.

https://creation.kr/animals/?idx=1291057&bmode=view

까마귀와 앵무새가 똑똑한 이유가 밝혀졌다! : 새들은 2배 이상의 조밀한 뉴런의 뇌를 가지고 있다.

https://creation.kr/animals/?idx=1291199&bmode=view

시베리아 어치 새는 복잡한 의사소통을 할 수 있다.

https://creation.kr/animals/?idx=1291054&bmode=view

찌르레기의 경이로운 군무

https://creation.kr/animals/?idx=5244335&bmode=view

음악가처럼 행동하는 새들은 진화론을 부정한다 : 때까치는 새로운 곡조를 만들어 노래할 수 있다.

https://creation.kr/animals/?idx=1291200&bmode=view

올빼미 – 밤하늘의 주인

https://creation.kr/animals/?idx=13975846&bmode=view

바다, 공중, 육상에서 살아가는 코뿔바다오리

https://creation.kr/animals/?idx=9348785&bmode=view

경이로운 테크노 부리 : 비둘기는 최첨단 나침반을 가지고 있었다.

https://creation.kr/animals/?idx=1291004&bmode=view

놀라운 발견 : 새의 날개는 ‘리딩 에지’ 기술을 가지고 있었다.

https://creation.kr/animals/?idx=1291032&bmode=view

물고기의 지능은 원숭이만큼 높을까?

https://creation.kr/animals/?idx=1291202&bmode=view

코끼리의 놀라운 지능.

https://creation.kr/animals/?idx=1291070&bmode=view

비둘기의 두뇌는 개코원숭이보다 우월하다 : 영장류에 필적하는 비둘기의 지능

https://creation.kr/animals/?idx=2799019&bmode=view

▶ 동물의 비행과 항해

https://creation.kr/Topic102/?q=YToxOntzOjEyOiJrZXl3b3JkX3R5cGUiO3M6MzoiYWxsIjt9&bmode=view&idx=6488035&t=board

▶ 동물의 경이로운 기능들

https://creation.kr/Topic102/?q=YToxOntzOjEyOiJrZXl3b3JkX3R5cGUiO3M6MzoiYWxsIjt9&bmode=view&idx=6488433&t=board

▶ 생체모방공학

https://creation.kr/Topic102/?q=YToxOntzOjEyOiJrZXl3b3JkX3R5cGUiO3M6MzoiYWxsIjt9&bmode=view&idx=6487906&t=board


출처 : CEH, 2023. 4. 10.

주소 : https://crev.info/2023/04/common-birds-astound-scientists/

번역 : 미디어위원회

미디어위원회
2023-04-11

독을 제거하고 먹는 새들

(Eating Like a Bird)

by James J. S. Johnson, J.D., TH.D.


     "오, 얘는 새처럼 먹네!" 이 말은 자녀가 놀러 나가기 전에 한 숟가락 뜨는 식사를 묘사한 말이다. 이 말의 이면에는 새의 식사는 간단하고 적게 먹어, 숙고해볼 가치가 없다는 가정이 깔려 있다.

하지만 새의 먹이와 식사는 정말 그렇게 하찮고 중요하지 않을까? ICR의 프랭크 셔윈(Frank Sherwin) 박사가 거대한 군함조(frigatebirds)와 작은 벌새(hummingbirds)를 반복적으로 관찰하며 기록한 것처럼, 새들의 식사와 식습관은 매우 흥미롭다.[1] 간단히 말해서, 우리 주 예수 그리스도께서는 새들이 "잘 보이지 않는" 놀라운 방법으로 먹이를 먹도록 하셨는데, 이것은 그분의 배려심 많은 지혜를 보여주고 있다.[2]

벌과 말벌의 침(stingers)에는 이들을 잡아먹는 새를 죽일 수 있을 정도의 독이 들어 있다.[3, 4] "벌을 잡아먹는 새(bee-eaters)"라고 불리는 벌잡이새과(Meropidae)의 새들은 벌을 잡아먹기 전에 벌의 독을 성공적으로 중화시키는 것으로 유명하다.[3]

벌잡이새는 날아다니는 벌을 잡은 다음, 벌의 침이 새의 부리 밖으로 향하도록 위치를 잡는다. 그런 다음 새는 벌의 침을 딱딱한 물체에 반복해서 내리쳐, 침에서 독이 쏟아져 나오도록 한다. 치명적일 수 있는 독을 배출시킨 다음, 벌잡이새는 먹이를 삼키고, 새의 내부는 아무런 해를 입지 않는다.[3]

이러한 독을 배출하는 능력을 가진 새는 벌잡이새과 뿐만이 아니다. 호주 까치(magpies)도 비슷한 습성을 보인다.

호주 까치의 식성은 까다롭지 않은데, 식물과 동물을 모두 먹으며, 주로 곤충, 거미류, 지렁이, 노래기 등 다양한 유충 및 성충 무척추동물들을 먹는다... 벌과 말벌을 먹을 때에는 침을 떼어낸 후, 위험한 곤충을 삼키는 모습이 관찰되었다![4]

또한 로드러너(roadrunners, 도로경주뻐꾸기)는 방울뱀을 공격할 때, 독이 가득한 송곳니 바로 옆을 정확하게 물어뜯는다. 로드러너의 부리가 입을 벌린 방울뱀의 머리 위쪽 절반을 덮치면, 방울뱀은 곧 머리가 치명적으로 으스러지고, 승리한 로드러너가 뱀을 먹어 치운다.[5]

새가 그러한 방법으로 먹는 것은 단순한 일이기 때문에, 이러한 특성과 습관을 우연히 발명해낼 수 있었을까?[2] 그럴 수 없어 보인다. 벌이나 말벌의 침을 피하면서 조심스럽게 잡고, 독을 제거한 후 삼키는 일은, 시행착오를 통해 얻어질 수 있는 식사 경험이 아니다. 마찬가지로 독이 있는 방울뱀의 입을 무작위적으로 물어뜯는 것은 새의 영양분을 얻는 데 도움이 되지 않는다.[3-5]

따라서 새가 먹이를 먹는 것은 그리 간단한 일이 아니다. 전체 과정은 그리스도의 배려 깊은 생명공학의 놀라운 설계와 기이한 일을 드러내고 있는 것이다.(욥 9:10).


References

1. The Christmas Island frigatebird “get[s] its meals on-the-wing by swooping down to the water or beach for a meal or even stealing food in-flight from a fellow bird.” Sherwin, F. 2012. Christmas Island Zoology. Acts & Facts. 41 (12): 16. See also Sherwin, F. 2020. Hummingbirds by Design. Acts & Facts. 49 (11): 17-19, noting “Most of us don’t appreciate the complexity of what happens when a hungry hummer feeds from a flower or man-made feeder. High-speed filming and detailed anatomical studies revealed the birds are designed with a long, forked tongue that…opens up when inserted into the flower, and the nectar is pumped up the tongue via two grooves. The hummer can do this up to 20 times per second.”

2. Matthew 6:26; Luke 12:24; Psalm 147:9. Evolutionists misrepresent the teleological complexity of God’s living creation—what Scripture calls His “wonders without number” (Job 9:10)—whenever evolutionists suggest that today’s creatures are so “simple” that they could have originated and survived by a galaxy of happy accidents. See Johnson, J. J. S. 2021. Eating Bugs Isn’t Always So Simple. Acts & Facts. 50 (10): 20.

3. Forshaw, J., ed. 1991. Bee-eaters. Encyclopedia of Birds. New York: Smithmark, 144-145.

4. Johnson, J. J. S. Chicken, Magpie, and Easter Greetings. Creation Science Update. Posted on ICR.org April 12, 2020, accessed November 2, 2022.

5. “Amazingly, God has designed the roadrunner so it can speedily aim at the face and fangs of a striking rattler, using its pointed bill to bite and clamp onto the rattler’s open mouth between or behind the upper fangs, lock-biting the snake in a death grip. Then the bird repeatedly thrashes and crushes the serpent’s head against rocks, killing it. The victorious roadrunner then eats the dead diamondback.” Johnson, J. J. S. 2017. Rats, Rabbits, and Roadrunners: Fitted to Fill. Acts & Facts. 46 (7): 21.

* Dr. Johnson is Associate Professor of Apologetics and Chief Academic Officer at the Institute for Creation Research.

.Cite this article: James J. S. Johnson, J.D., Th.D. 2023. Eating Like a Bird. Acts & Facts. 52 (1).


*관련기사 : [쿠키영상] '땅 위에 사는 뻐꾸기' 로드러너, 방울뱀과 한판 붙다! (2016. 1. 10. 쿠키뉴스)

https://www.kukinews.com/newsView/kuk201601100002

따오기에 먹힌 맹독성 두꺼비, '황소개구리' 전철 밟나? (2022. 11. 26. 뉴스웍스)

https://www.newsworks.co.kr/news/articleView.html?idxno=616559


*참조 : 생물 독

https://creation.kr/Topic502/?q=YToxOntzOjEyOiJrZXl3b3JkX3R5cGUiO3M6MzoiYWxsIjt9&bmode=view&idx=6825628&t=board

동물의 경이로운 기능들

https://creation.kr/Topic102/?q=YToxOntzOjEyOiJrZXl3b3JkX3R5cGUiO3M6MzoiYWxsIjt9&bmode=view&idx=6488433&t=board

동물의 비행과 항해

https://creation.kr/Topic102/?q=YToxOntzOjEyOiJrZXl3b3JkX3R5cGUiO3M6MzoiYWxsIjt9&bmode=view&idx=6488035&t=board

조류 - 기타 새

https://creation.kr/Topic102/?q=YToxOntzOjEyOiJrZXl3b3JkX3R5cGUiO3M6MzoiYWxsIjt9&bmode=view&idx=6492428&t=board


출처 : ICR, 2022. 12. 29.

주소 : https://www.icr.org/article/eating-like-a-bird/

번역 : 미디어위원회

미디어위원회
2023-03-23

번식기의 딱따구리가 뼈를 먹는 이유는?

(Why Breeding Woodpeckers Snack on Bones)

by James J. S. Johnson, J.D., TH.D.  


      우리는 달걀을 먹는 동안(삶은 계란, 계란후라이, 계란찜 등으로) 달걀 껍질을 먹지 않는다. 마찬가지로 고등어나 닭고기를 먹을 때, 뼈를 먹지 않는다.

어떤 새와 포유류들은 영양학적으로 필요한 칼슘(calcium)을 얻기 위해, 부서진 알껍질이나 달팽이껍질을 먹는다.[1] 딱따구리(woodpeckers)와 도요새(sandpipers)와 같은 새들도 또한 이 기본적인 미네랄을 얻기 위해 뼈를 먹는다.[2, 3] 칼슘(CaCO3로부터)을 섭취하는 일은 매우 중요한 일이다. 하지만, 이 동물들은 칼슘이 필요하다는 것을 어떻게 알았을까? 특히 번식기에 필요하다는 것을?

관련된 질문으로, 태아가 성장하며 자궁의 생리학적 변화를 겪는 임산부는 갑자기 해산물(또는 다른 무엇이든)을 먹고 싶어하는 갈망이 어떻게 생겨나는 것일까? 어떻게 임산부는 영양학적 변화가 필요하다는 것을 알고 있는 것일까?[4]

사실 영양분으로 칼슘을 취하는 행동은 성경적으로 타당하다. 왜냐하면 그것은 창조주가 피조물들이 성공적으로 번식할 수 있도록 입력해 놓으셨기 때문이다. 즉, 생물은 그 종류대로 지구의 서식지에 '충만하도록‘ '생육하고 번성'하는 것이다(창세기 1:22). 그러므로 피조물들이 어떻게 창세기의 명령을 이행하고 있는지를 알아내는 것은, 과학으로 위장하여 이러한 것들이 자연주의적 과정으로 우연히 만들어졌다는, 창조주를 배제하기 위한 진화론자들의 오만한 상상과 헛된 말을 '뒤엎어버리는' 데에 도움이 된다(디모데전서 6:20).[5]

창조주는 생물들에게 생육하고 번성하여 바닷물과 땅에 "충만하라"고 명령하셨다. 생물들이 그러한 명령을 수행하도록, 창조주는 필요한 것을 그들에게 제공했고, 우리는 지금 많은 복잡한 세부 사항들을 알게 되는 것이다. 성공적인 번식을 위해서는 유전학(genetics)과 후성유전학(epigenetics)에 의해 조절되는 신체적 생리적 특성들과 함께, 새의 비육체적 "정신"에 의해서 수행되는 의사결정 기반 행동과의 조화가 필요하다. 이처럼 육체적인 신체 시스템과 비육체적 정신 행동의 균형 잡힌 조화는, 하나님의 피조물들이 어떻게 살아가는지를 연구하면서, 하나님을 경배할 수밖에 없도록 만드는 "셀 수 없는 기이한 일"들 중 하나인 것이다(욥기 9:10).[5]

생물들이 칼슘과 같은 필수 미네랄을 포함하여 필요한 영양소를 살아가는 서식지에서 찾을 때, 그들은 연속환경추적(continuous environmental tracking, CET)을 통해서, 필요한 것을 선택하고 취한다.[6] 따라서 창조주는 생물들이 그들의 서식지에서 필요한 것을 적극적으로 선택할 수 있도록 해놓으셨다. 서식지가 동물을 "선택"하거나, 어떤 "모습을 만들어낸다"는 것은 사실이 아니다.[7]

그렇다면, 우리는 창조주가 만드신 붉은벼슬 딱따구리(red-cockaded woodpeckers,  Picoides borealis)로부터 무엇을 배울 수 있을까? 이 놀라운 생물들은 알을 낳기 직전과 알을 낳는 동안 뼈로부터 칼슘을 재활용하기 위해서, 뼛조각을 소비한다. 한 연구는 다음과 같이 보고했다 :

암컷들은 땅에 있는 맹금류들이 뱉어 놓거나 배설해놓은 펠릿(pellets)에서 뼛조각들을 꺼낸다... 작은 뼛조각들은 펠릿에서 바로 섭취했고, 큰 뼛조각들은 나뭇가지로 옮긴 후에, 부리와 턱으로 쪼고 부숴뜨린다.... 또한 나무껍질 사이에 뼛조각을 끼운 다음, 부리로 쐐기처럼 박고 두들겨 은닉했다. 우리는 나무에서 숨겨둔 두 개의 뼛조각을 찾아냈는데, 딱다구리들은 숨긴 뼈를 꺼내어 소비하고, 다른 곳에 숨기기도 하는 것을 관찰했다.[2]

알을 낳지 않을 때, 암컷 딱따구리는 대부분의 뼛조각들을 무시하지만, 번식기 동안에는 뼛조각을 찾고 칼슘을 섭취하기 때문에, 이는 의도적인 것이고 목표와 목적을 갖고 수행하는 행동인 것이다.[2, 5, 7] 이것은 정말로 놀랍다! 암컷 딱따구리는 칼슘이 필요하다는 것을 어떻게 알고 있는 것일까? 

모든 것이 무작위적 돌연변이에 의해 우연히 생겨났다는 진화론은 딱따구리들이 어떻게 알을 낳는 계절에 맞춰 칼슘이 풍부한 뼛조각을 사냥하고 섭취하는지를 설명할 수 없다.[5, 7] 그러나 창조주 예수 그리스도는 붉은벼슬 딱따구리를 포함하여 모든 창조물들이 때에 맞추어(전도서 3:1) 목적있는 행동을 하는 것을 설명할 수 있다.  


References

1. Straus, M. Calcium in Homemade Dog Food. Whole Dog Journal. Posted on whole-dog-journal.com May 28, 2019. See also Beasom, S. L. and O. H. Pattee. 1978. Utilization of Snails by Rio Grande Turkey Hens. Journal of Wildlife Management. 42 (4): 916-919.

2. Repasky, R. R., R. J. Blue, and P. D. Doerr. 1991. Laying Red-Cockaded Woodpeckers Cache Bone Fragments. The Condor. 93 (2): 458-461.

3. MacLean, Jr., S. F. 1974. Lemming Bones as a Source of Calcium for Arctic Sandpipers (Calidris spp.). Ibis. 116 (4): 552-557.

4. You Want to Eat What? An OB/GYN’s Guide to Pregnancy Cravings. Northwestern Medicine. Posted on nm.org, accessed January 19, 2023.

5. Johnson, J. J. S. 2017. Clever Creatures: “Wise from Receiving Wisdom.” Acts & Facts. 46 (3): 21, citing Proverbs 30:24-28.

6. For more information on continuous environmental tracking, visit ICR.org/cet.

7. Guliuzza, R. J. 2021. A New Commitment to Deep Research. Acts & Facts. 50 (9): 4-5.

* Dr. Johnson is Associate Professor of Apologetics and Chief Academic Officer at the Institute for Creation Research.


*참조 : 설계자를 가리키는 딱따구리는 진화론을 쪼고 있다.

https://creation.kr/Topic102/?idx=13859641&bmode=view

생물의 뇌들이 모두 우연히? : 딱따구리, 초파리, 사람의 뇌

https://creation.kr/animals/?idx=3069629&bmode=view

딱따구리, 혈액응고, 분자모터를 모방한 생체모방공학

https://creation.kr/animals/?idx=1291167&bmode=view

부리, 혀, 발톱의 조화 '딱따구리'

https://creation.kr/animals/?idx=1290922&bmode=view

딱따구리 쪼는 속도 총알의 2배

https://creation.kr/animals/?idx=1290952&bmode=view

연속환경추적(CET), 또는 진화적 묘기?

https://creation.kr/LIfe/?idx=14092341&bmode=view

연어, 구피, 동굴물고기에서 보여지는 연속환경추적(CET)

https://creation.kr/Variation/?idx=12975031&bmode=view

식물에서 연속환경추적(CET)은 명확해지고 있다.

https://creation.kr/Plants/?idx=12440278&bmode=view

초파리의 계절에 따른 빠른 유전적 변화 : “적응 추적”은 진화가 아니라, 설계를 가리킨다.

https://creation.kr/Variation/?idx=11298959&bmode=view

▶ 동물의 경이로운 기능들

https://creation.kr/Topic102/?q=YToxOntzOjEyOiJrZXl3b3JkX3R5cGUiO3M6MzoiYWxsIjt9&bmode=view&idx=6488433&t=board

▶ 생체모방공학

https://creation.kr/Topic102/?q=YToxOntzOjEyOiJrZXl3b3JkX3R5cGUiO3M6MzoiYWxsIjt9&bmode=view&idx=6487906&t=board


출처 : ICR, 2023. 2. 28.

주소 : https://www.icr.org/article/why-breeding-woodpeckers

번역 : 미디어위원회

미디어위원회
2023-01-23

올빼미 – 밤하늘의 주인

(Owls : Masters of the night sky)

Matthew Cserhati


    올빼미(owls, 부엉이)는 큰 눈을 가진 흥미롭고 장엄한 새이며, 머리에 귀 같은 깃(earlike tufts)이 있고, 날 때 소리가 나지 않으며, 밤에 부엉부엉하고 우는 것이 특징이다. 그들은 남극 대륙을 제외한 모든 대륙에 산다. 이 새들은 혼자 다니며, 보통 황혼이나 밤에 활동한다. 가시올빼미(Speotyto cunicularia) 및 쇠부엉이(Asio flammeus)와 같은 일부 종은 낮 동안에 활동한다.

올빼미는 곤충이나 설치류와 같은 작은 동물들을 먹는다. 수리부엉이(Bubo bubo)와 같은 일부 종은 새끼사슴을 죽일 수도 있는 것으로 알려져 있다.[1]

그림 1. a. 올빼미과(Strigidae)의 가시올빼미(Athene cunicularia). b. 가면올빼미과(Tytonidae)의 동부헛간올빼미(Eastern Barn Owl, Tyto javanica stertens).


오늘날에는 두 과(科, families)의 올빼미가 있는 것으로 알려져 있는데, 올빼미과(Strigidae)에는 25개의 속(genera)과 190개의 종(species)이 있으며(그림 1a), 가면올빼미과(Tytonidae)는 두 개의 속과 20개의 종이 있다(그림 1b). 올빼미과는 ‘귀 깃’(ear tufts, 실제 귀가 아닌 대칭으로 배열된 깃털, 그림 2)을 가진 것이 있으며, 눈이 비교적 크고, 부리는 비교적 작다. 가면올빼미과는 심장 모양의 얼굴과 긴 다리를 갖고 있다. 그들의 눈은 일반적으로 올빼미과의 눈보다 작고, 부리는 더 길다.

올빼미의 신장은 13cm 크기의 엘프올빼미(Elf Owl, Micrathene whitneyi)에서부터 82cm인 북방올빼미(큰회색올빼미, Strix nebulosi)까지 범위를 갖고 있다. 대부분의 다른 조류와는 달리 암컷 올빼미가 수컷보다 더 크고, 색상이 더 다양하다.


올빼미는 밤에 어떻게 보는가?

올빼미는 특징적으로 큰 눈을 갖고 있는데, 올빼미 눈의 무게는 체중의 5%에 이른다. 이는 인간의 눈에 비해 100배나 되는 비율이다.[2] 그들의 눈은 우리의 눈보다도 빛과 움직임에 대해 훨씬 더 민감하며, 모든 생물들이 밤에 사물을 볼 때 사용하는, 빛을 감지하는 간상세포(rod cells)의 밀도가 상대적으로 높다. 간상세포가 사람의 눈에는 제곱밀리미터당 약 20만 개가 있는데 비해, 올빼미의 눈에는 최대 1백만 개가 있다.[3]

그림 2. 귀깃이 있는 점박이수리부엉이(Spotted Eagle Owl(Bubo africanus)의 한쪽 눈에서 볼 수 있는 순막(瞬膜, nictitating membrane).


다른 많은 새들과는 달리, 올빼미는 정면을 향하는 눈을 갖고 있으며, 양 눈에 대한 시야가 겹친다. 이것은 맹금류에 존재하는 양안시(binocular vision)를 허용한다. 그러나, 오직 부엉이만이 튜브 모양의 눈을 제자리에 고정시키고 있는 ‘공막 고리(sclerotic rings)’라 불리는 뼈 구조를 갖고 있다.(그림 3). 따라서 그들은 눈알을 ‘굴릴’ 수 없어서, 그들 주변을 보려면 머리를 돌려야 한다. 그러나 올빼미는 머리를 양쪽으로 270도나 돌릴 수 있으며, 심지어 뒤집기(upside down)도 가능하다! 이를 위해 목에는 14개의 척추(경추)를 갖고 있으며, 이것은 인간에게 있는 수의 두 배이다.

올빼미는 또한 순막(nictitating membrane, nictitating eyelid, 그림 2)이라 불리는 세 번째 투명한 눈꺼풀을 가지고 있다. 이것은 눈의 수분을 유지하며 보호할 수 있도록, 눈 위로 끌려 나올 수 있다.

그림 3. 올빼미 눈의 단면. (Cornea/각막, Iris/홍채, Sclerotic ring/공막 고리, Lens/수정체, Retina/망막, Pecten/즐막, Optic nerve/시신경).


극상의 청력자

올빼미는 밤에 사냥할 때, 높은 야간 시력 외에도, 먹잇감의 소리에 의존한다. 그들의 청각계는 고도로 정교하고, 매우 민감하다. 북방올빼미는 750m 이상 떨어진 거리에서도 쥐가 찍찍하는 소리를 들을 수 있다! 많은 올빼미들이 원반 모양의 얼굴을 갖고 있어서(귀는 이 안면 원반 위에 있으며, 깃털로 덮여 있다), 소리를 귀쪽으로 깔때기처럼 모아준다. 이것은 마치 위성 수신 접시안테나와 같은 기능을 하며, 올빼미의 두개 위에 있는 특수 근육을 움직여 초점 거리를 조절할 수 있다. 그것은 마치 우리 눈의 수정체가 모양을 변화시켜, 여러 거리에서 오는 빛의 초점을 맞추는 방식과 같다.

올빼미의 귀는 얼굴 원반을 덮는 깃털 아래에 있다. 많은 종들에서 귀는 비대칭적으로 배치되어 있다(그림 4). 이것은 올빼미가 그들의 먹이를 3차원적으로 찾아내는 데 도움이 된다. 사냥할 때, 올빼미는 머리를 왼쪽 혹은 오른쪽으로 돌려서, 먹이로부터의 음파가 동시에 양쪽 귀에 도달하도록 한다. 그런 다음 위나 아래의 음량 수준의 차이에 근거하여 올빼미는 머리를 위 아래로 움직여서 먹이를 찾아낸다.[4] 이 표적조준 메커니즘은 매우 정확해서, 올빼미가 수직적 및 수평적으로 1.5도 이내에서 먹이를 찾도록 해준다.

그림 4. 가면올빼미(barn owl, 원숭이올빼미)에서 비대칭적인 귀의 배치.


소음 없는 비행

또한 올빼미는 사냥할 때, 거의 소음 없이 날아감으로, 먹잇감에게 들키지 않고 접근할 수 있다. 한 특징은 저속 비행을 가능하게 하는 큰 날개인데, 이것은 소음이 적다. 올빼미 날개의 전연(leading edge, 리딩 에지)의 제1깃털(primary feathers)에 있는 빗(comb) 모양의 구조가 난기류를 상쇄시킨다. 올빼미의 제2깃털(secondary feathers)의 들쭉날쭉 한 가장자리는 난기류를 더욱 감소시킨다. 대부분 올빼미 깃털의 미늘(barbules, 작은 깃가지)은 펜눌라(pennula, 단수는 pennulum, 라틴어로 작은 날개)라고 하는 머리카락과 같은 구조를 갖고 있다. 이것들은 날개가 우단(velvet) 같은 느낌을 갖도록 해주며[5], 깃털들이 서로 소리 없이 미끄러지도록 한다.[6] 그것은 또한 날개의 다공성(porosity)을 증가시켜, 소음을 더욱 줄인다.[7] 이것은 엔지니어들이 컴퓨터의 더 조용한 냉각팬 날개를 설계할 수 있도록 영감을 주었다.[8]

물고기와 곤충(다가오는 올빼미의 소리를 들을 수 없는) 만을 사냥하는 올빼미 종에는 이러한 소리를 줄여주는 특성이 없다. 원래의 올빼미 종류에서 유전정보를 파괴한 돌연변이를 통해 이러한 특성을 잃어버렸을 수 있다. 만약 그러한 쇠퇴되고 있는 기능이 생존 능력에 영향을 미치지 않았다면, 자연선택은 그러한 돌연변이를 제거하지 않았을 것이다.


올빼미의 펠릿이 말해주고 있는 것은?

올빼미는 먹이를 씹지 않고 삼킨다. 먹이는 두 부분으로 나눠진 위장에서, 먼저 선위(glandular stomach) 부분으로 들어가는데, 여기서 산과 효소가 음식을 분해하여, 소화가 더 쉽게 되도록 한다. 그런 다음 먹이는 두 번째 부분인 모래주머니(gizzard)로 이동하여, 모피, 깃털, 뼈와 같은 소화될 수 없는 것들은 펠릿(pellet)으로 압축된다. 펠릿은 다시 선위로 되돌아가서, 나중에 입 밖으로 배출(regurgitation)된다. 펠릿은 회색 또는 검은 색이며, 숲 지역이나 헛간에서 찾아볼 수 있다. 펠릿의 내용물은 올빼미의 식단과 특정 지역 먹이 종의 종류에 대해 알려준다.


올빼미들은 한 ‘종류’인가, 그 이상인가?

오늘날 올빼미의 두 주요 분류군은 두 구별된 창조된 종류(created kinds), 또는 바라민(baramins)을 반영하는 것으로 보는 것은 자연스럽다. 그러나 화석 올빼미 오지고프티닉스(Ogygoptynx wetmorei)는 올빼미과(Strigidae)와 가면올빼미과(Tytonidae)의 특성뿐만 아니라, 자기 자신의 고유한 특성도 갖고 있다.[9] 따라서 오지고프티닉스(또는 최소한 그에 가까운)는 조상 형태인 단 하나의 올빼미 바라민이었을 수 있다. 대홍수 이전에 살고 있던 이런 형태의 올빼미가 그 종류 내의 전체 유전정보가 반영되어, 나중에 많은 종분화(specialization)와 다양화(diversification)가 나타났을 가능성이 있다. 멸종된 화석 종인 쿠바 자이언트올빼미(giant Cuban owl, Ornimegalonyx oteroi)로부터 짐작해볼 수 있듯이, 그 중 일부 유전정보는 오늘날의 올빼미에게는 더 이상 존재하지 않는다. 그것의 키는 1m가 넘었다.[1] 놀랍지 않게도, 화석 기록에서 올빼미가 진화되었다는 개념을 지지할만한 증거는 없다. 위에서 언급한 오지고프티닉스는 사실상 가장 오래된 것으로 알려진 올빼미 화석으로, 약 6천170만~5천680만 년 전으로 추정되고 있다.[10] 그럼에도 그것은 현대의 올빼미와 똑같이 생겼다.


요약 및 결론

올빼미는 고도로 복잡한 시각계와 청각계를 갖고 있는 놀라운 동물이다. 올빼미는 무작위적 돌연변이들로 우연히 생겨난(진화된) 것이 아니라, 하나님의 설계에 대해 말하고 있다. 진화론을 믿는 것보다, 이 동물에 대해 하나님이 말씀하신 것을 믿는 것이 훨씬 더 합리적이다.


------------------------------------------

저주 속의 설계?


인류의 타락 이전에는 지각 있는 동물(성경의 용어로는 ‘네페쉬 차이야/nephesh chayyāh’ – 곤충은 포함되지 않았을 것이다)의 죽음은 없었다. 모든 짐승과 새는 먹이로 식물을 먹었다(창세기 1:30). 그러므로 올빼미는 인류의 타락 이후에(역주: 노아 홍수 이후에) 육식성이 되었을 것인데, 곤충은 처음부터 항상 먹었을 것이다.[11] 따라서, 올빼미가 설치류 같은 것을 사냥하는 것을 돕는 기능들이 나중에 생겨난 것일까? 아마도 일부는 그랬을 것이다. 인류의 타락 바로 이후에 뱀이 배로 기어 다닌 것처럼(창세기 3:14), 올빼미를 효율적인 포식자로 만들어주는 일부 설계 기능을 위한 유전자가 처음부터 창조되었거나, 최소한 그때에 활성화되었을 수 있다(하나님은 인류의 타락을 미리 아셨다).


그러나 오늘날 사냥에 사용되는 모든 기능들이 그런 목적을 위해 설계되었을 필요는 없다. 큰박쥐(fruit bats)처럼, 식물만을 먹지만 날카로운 이빨을 가진 동물들이 있다.[12] 마찬가지로, 인류의 타락 이전에 올빼미는 그들의 날카로운 부리와 발톱을 사용하여 식물을 먹었을 수 있다.형태학적으로 ‘맹금류’인 야자민목 독수리(Palm-Nut Vulture)는 여전히 식물을 먹는다.[13] 올빼미의 소리 위치 파악 능력은 오늘날에도 곤충을 찾는 데 유용할 것으로 추정되며, 인류의 타락 이전에는 짝을 찾기 위해 사용되었을 수도 있다.

------------------------------------------------


References and notes

1. Nelson, V., Monumental Monsters, Untold Secrets of Planet Earth Publishing Company, Inc., Red Deer, Alberta, Canada, p. 56–57, 2017. 

2. Lewis, D., Owl Eyes & Vision; owlpages.com, accessed 30 Sep 2019. 

3. Jonas, J.B. et al., Count and density of human retinal photoreceptors, Graefes Arch Clin Exp Ophthalmol. 230(6):505–10, 1992. 

4. Krumm, B. et al., The barn owls’ Minimum Audible Angle, PLoS One 14(8):e0220652, 2019. 

5. Weger, M. and Wagner, H., Distribution of the characteristics of barbs and barbules on barn owl wing feathers, J. Anatomy 230(5):734–742, 2017. 

6. Wagner, H. et al., W. Features of owl wings that promote silent flight, Interface Focus 7(1), 2017. 

7. Bachmann, T. et al., Morphometric characterisation of wing feathers of the barn owl Tyto alba pratincola and the pigeon Columba livia, Frontiers of Zoology 4(23), 2007. 

8. Catchpoole, D., As silent as a flying owl, Creation 40(2):56, 2018. 

9. Rich, P.V., and Bohaska, D. J., The Ogygoptyngidae, a new family of owls from the Paleocene of North America, Alcheringa 5(2):95–102, 1981. 

10. Ogygoptynx Rich and Bohaska 1976 (owl); fossilworks.org; accessed 4 Nov 2019. 

11. Sarfati, S., When did animals become carnivorous?, 31 Aug 2014.

12. Batten, D. et al., The Creation Answers Book, Creation Book Publishers, Powder Springs, GA, USA, 2018.

13. Catchpoole, D., The bird of prey that’s not, Creation 23(1):24–25, 2000; creation.com/vulture. 


*MATTHEW CSERHATI, PhD, BSc B.Sc.(Hons.), P.G.C.E., M.R.S.B.,

Matthew has a PhD in biology and a BSc in software development from the University of Szeged, Hungary. He is a speaker and scientist for CMI-USA. For more: creation.com/matthew-cserhati.


*관련기사 : 올빼미의 ‘스텔스 사냥’ 비법은 ‘다운’ 깃털에 (2013. 11. 25. 한겨레)

http://ecotopia.hani.co.kr/177307

부엉이 깃털에 소음 억제 '스텔스' 기능 있다 (2017. 7. 18. 글로벌이코노믹)

https://news.g-enews.com/article/Global-Biz/2015/08/201508171700319871643_1?md=20150817171405_U

올빼미 날개, 풍력발전 소음해결 열쇠 될까 (2017. 7. 18. 한국에너지)

https://www.koenergy.co.kr/news/articleView.html?idxno=91117

‘밤의 제왕’ 수리부엉이의 ‘스텔스’ 사냥 기술 (2021. 1. 27. 중앙일보)

https://www.joongang.co.kr/article/23979635#home

 

*참조 : 개, 올빼미, 딱정벌레를 모방하라 : 생체모방공학은 우리의 삶을 증진시킬 것이다.

https://creation.kr/animals/?idx=1291294&bmode=view

놀라운 발견 : 새의 날개는 ‘리딩 에지’ 기술을 가지고 있었다.

https://creation.kr/animals/?idx=1291032&bmode=view

▶ 동물의 비행과 항해

https://creation.kr/Topic102/?q=YToxOntzOjEyOiJrZXl3b3JkX3R5cGUiO3M6MzoiYWxsIjt9&bmode=view&idx=6488035&t=board

▶ 동물의 경이로운 기능들

https://creation.kr/Topic102/?q=YToxOntzOjEyOiJrZXl3b3JkX3R5cGUiO3M6MzoiYWxsIjt9&bmode=view&idx=6488433&t=board

▶ 성경의 모순으로 주장되는 것들 - 채식과 육식

https://creation.kr/Topic502/?q=YToxOntzOjEyOiJrZXl3b3JkX3R5cGUiO3M6MzoiYWxsIjt9&bmode=view&idx=6825672&t=board

▶ 성경의 모순으로 주장되는 것들 – 송곳니

https://creation.kr/Topic502/?q=YToxOntzOjEyOiJrZXl3b3JkX3R5cGUiO3M6MzoiYWxsIjt9&bmode=view&idx=6825658&t=board


출처 : Creation 42(3):28–31, July 2020

주소 : https://creation.com/owls

번역 : 이종헌

미디어위원회
2022-12-22

놀라운 폭탄먼지벌레

(The Amazing Bombardier Beetle)

Anady Mcintosh


     폭탄먼지벌레(bombardier beetle, 폭격수 딱정벌레)로 알려진 대단한 곤충은 포식자를 격퇴하기 위해 뜨거운 스프레이를 분사하는데, 대게 이긴다. 이 스프레이는 부식성 화학물질과 뜨거운 물과 증기의 혼합물이며, 특수 노즐에서 분사되어, 모든 방향으로 향할 수 있다!

그림 1. 아프리카 폭탄먼지벌레(Stenaptinus insignis)


움직일 수 있는 탱크 포탑을 가진 특수 방어

폭탄먼지벌레(Carabidae brachinini)는 주로 아시아, 아프리카, 호주, 및 미국의 일부 지역과 같은 따뜻한 기후에서 발견된다. 그러나 그들은 또한 유럽에서도 발견되며, 영국 남부에서도 작은 서식지가 목격되었다. 그들은 일반적으로 물에서 멀리 떨어져 있지 않으며, 낮에는 바위 아래 숨어 있다.

폭탄먼지벌레의 화학적으로 가열된 증기와 유독화학물질의 혼합은 뒤꽁무니에서(그림 2) 모든 방향으로 이동 가능한(심지어 뒤로 비틀어서 전방을 향하게 할 수 있는) 특수 ‘포탑(turret)’을 통해 방출된다.(그림 3). 전체 시스템은 개미, 새, 거미, 개구리와 같은 포식자들을 격퇴하는데 사용되며, 대게 성공적으로 적을 기절시킨다.


이것은 어떤 방식으로 작동되는가?

화학물질은 연속적 흐름으로 나오지 않는다. 1999년에 톰 아이즈너(Tom Eisner) 교수는 폭탄먼지벌레에 관한 독창적인 논문을 공동으로 작성했는데, 거기서 그는 카탈라아제(catalase)와 페록시다아제(peroxidase)라는 두 촉매(catalysts) 하에, 두 화학물질 하이드로퀴논(hydroquinone)과 과산화수소(hydrogen peroxide)를 혼합시켜 일련의 폭발을 일으킨다는 것을 보여주었다.[1] (촉매는 반응이 훨씬 빠르게 일어나도록 하는데, 반응 과정에서 소모되지는 않는다). 아이즈너는 이 훌륭한 실험에서, 줄로 묶인 아프리카 폭탄먼지벌레를 촬영한 다음, 슬로우 모션으로 다시 재생했다. 이를 통해 그는 폭발이 초당 약 500번 발생했으며, 반복적으로 발사되는 기관총과 유사하게, 각각 2~3 초간의 짧은 발사로 분사되는 것을 보여주었다. 폭탄먼지벌레는 4~5번 반복적으로 이런 방출을 할 수 있으며, 이후에 고갈된 화학 시스템을 복구하는데 몇 분 정도 걸린다.

그림 2. 공격하는 개미에게 살포하는 폭탄먼지벌레


나는 폭탄먼지벌레에서 영감을 받아, 멋진 설계가 발견될 수 있다는 것을 깨달았다. 아이즈너와 논의한 후에, 나는 영국 리즈 대학(Leeds University)에서 그것에 관한 작업을 시작했다. 우리는 이 폭발이 독특한 밸브 시스템에 의해 제어된다는 것을 증명했는데, 여기서 높은 압력은 유입 밸브를 닫게 하고, 유출 밸브를 열게 한다(그림 4를 보라). 이것은 거의 순간적으로 상당 부분의 액체(대부분 물)가 증기로 팽창하는 격렬한 증기폭발(violent vapour explosion, flash evaporation)로 이어진다. 주어진 질량의 증기는 같은 질량의 물 부피의 약 1,600배를 차지하므로, 이 분출은 부식성의 화학물질과 함께 많은 양의 남은 물을 운반하는 힘을 갖는다. 그 분사(spray)는 약 20cm까지 미치는 것으로 나타났는데, 그것은 1mm 길이의 작은 연소실 크기의 약 200 배에 달한다.[2, 3, 4] (David Attenborough의 ‘Life’ 시리즈에서 그것이 일어나는 순서를 보라. 거기서 폭탄먼지벌레가 공격하는 개미를 성공적으로 격퇴하는 것을 볼 수 있다.)


작은 연소실

폭탄먼지벌레의 뒤쪽 부분을 절개함으로써, 정교한 화학 방어 시스템에 대해 훨씬 더 자세히 볼 수 있었다. 두 개의 화학물질이 반응하기 전에, 그것들은 매우 얇은 튜브(tube, 관)을 따라 함께 이동하는데, 여기서 촉매가 분비되거나, 혹은 결정 형태로 있을 수 있다.

그림 3. 폭탄먼지벌레의 포탑은 뒤로 불을 뿜는 것을 가능하게 한다. 


촉매인 카탈라아제 및 페록시다아제가 과산화수소 및 하이드로퀴논에 작용한다. 그러면 과산화수소는 물/증기로 변환되어, 모든 과산화수소 분자들에서 산소 원자를 유리시킨 다음, 이것이 하이드로퀴논에서 방출된 수소 분자와 결합한다. 강한 수소/산소 반응으로 인한 열로 인해, 나머지 화학물질이 반응하고, 증기가 팽창함으로써, 수증기가 폭발한다.

밸브 시스템은 수동 반응 시스템(passive response system)이어서, 밸브는 압력 변화에 의해 작동한다. 연소실이 비었을 때(그림 4의 왼쪽 그림), 그리고 대기압 하에서, 유입 튜브가 열려 반응물질이 연소실로 들어가고, 막피(membrane)가 튜브의 아랫부분을 막아서, 출구 튜브가 닫힌다. 연소실이 가득 차고, 화학물질이 반응하면(그림 4의 가운데 그림), 권투 글러브와 같은 모양의 연소실 말단이 유입 튜브를 집어서 닫는다. 연소실 내 화학 반응이 진행됨에 따라, 열이 발생하고, 연소실 내 압력이 증가하면, 막피가 힘을 받아서, 출구 튜브의 바닥 근처가 열리게 된다(그림 4 오른쪽 그림).

그림 4. 참고문헌 4의 p.30에 있는 원본을 가지고 재구성한, 폭탄먼지벌레의 밸브 시스템 도표. 폭탄먼지벌레 연소 과정 : *좌측; open inlet tube(유입 튜브를 연다), chamber not under pressure(연소실이 압력을 받지 않는다), cuticle down and valve closed(표피가 내려가서 밸브가 닫힌다). *가운데; pinching of inlet prevents more fuel entering(유입부를 집어서 더 이상의 연료가 들어오는 것을 막는다), chamber under pressure(연소실이 압력을 받는다), reaction occurs, heat produced and aqueous solution heats up(반응이 일어나고, 열이 발생하고, 물 같은 용액이 뜨거워진다), cuticle down and valve closed(표피가 내려가서 밸브가 닫힌다), closed(닫힌다). *우측; ejection of hot pressurized solution(mainly water and steam)(압력을 받던 뜨거운 용액(주로 물과 증기)이 분출한다), cuticle up open(표피가 올라가고 열린다)


연소실 자체에 대한 초기 조사에 따르면, 연소실 구조는 폭탄먼지벌레가 자기 자신을 폭발하지 않도록 특수한 내열 재료로 되어 있음을 시사한다. 연소실 자체뿐만 아니라, 연소실에 들어가고 나가는 튜브는 폭탄먼지벌레의 소화계통과 완전히 분리되어 있다.

뜨거운 유체가 발사되면, 연소실 내의 압력이 떨어지고, 유입부가 다시 열림으로써, 연소실 내로 더 많은 반응물이 들어오도록 허용하며, 모든 반응물이 배출될 때까지 그 과정이 반복된다.

이 과정을 ‘맥동 연소(pulse combustion)’라고 하며, 일부 엔진에서 추력을 주기 위해 사용된다. 이에 대한 가장 악명 높은 사례는 1944년 제2차 세계대전에서 히틀러가 런던과 영국 남부 카운티를 폭격하는데 사용했던 무인 V1 비행폭탄(‘개미귀신(Doodlebug)’)이다(그림 5). V1의 경우에 연료는 공기 중에서 연소하는 휘발유(가솔린)였다. 그 당시 폭탄먼지벌레가 이미 이와 비슷한 연소 시스템을 사용하고 있다는 것을 아는 사람은 없었을 것이다!

그림 5. ‘개미귀신(Doodlebug)’이라는 별명을 가진, 나치 독일이 사용했던 V1 비행폭탄은 폭탄먼지벌레에 있는 것과 유사한 맥동연소로 구동됐다.


폭탄먼지벌레로부터의 생물학적 영감

리즈 대학(University of Leeds)에서 시작된 연구를 통해, 우리는 폭탄먼지벌레가 사용하고 있는 기술을 기반으로, 스프레이 시스템(spray system)을 개발할 수 있었다. 창조론에 대한 믿음이 연구의 문을 닫게 만든다는 진화론자들의 주장과는 달리, 폭탄먼지벌레의 연소실은 나로 하여금 설계되었음이 틀림없다고 확신하게 만들었고, 이러한 연구조사를 수행하게 했다.

이해해야 할 설계적 특성이 있다는 것은 분명했다. 그리고 이것은 스프레이 설비의 특허로까지 이어졌는데, 그것은 특수한 연소실(폭탄먼지벌레 연소실의 약 20배 크기)에서 물을 가열하는 설비로써, 거기서 유입과 유출 밸브는 지정된 시간에 열리고 닫히도록 전자적으로 제어된다. 폭탄먼지벌레와 마찬가지로 밸브를 특수하게 설정한다면, 우리가 사용하는 가열실 2cm 길이의 대략 200배인 최대 거리 약 4m까지 스프레이를 분사할 수 있음을 발견했다!


폭탄먼지벌레의 설계를 모방하여 상을 받다

우리의 설계에는 화학적 가열을 사용하는 폭탄먼지벌레의 수동 시스템과 달리, 화학물질을 사용하지 않는 능동 제어 시스템(active control system)을 갖고 있다. 그러나 밸브 시스템 자체는 폭탄먼지벌레가 사용하는 것과 매우 유사하며, 시제품(prototypes) 중 하나는 전시되어 있다(그림 6). 2010년에는 혁신과 기술에 가장 크게 기여한 공로로, 우리의 연구는 타임즈 고등교육(Times Higher Education) 상을 수상했다. 이 기술은 자동차 및 트럭 엔진에서 연료 인젝터용 스프레이 시스템의 개발에 이미 사용되고 있다. 이 발명품은 산불 진압용 소화기를 위해 활발하게 개발되고 있으며, 상당한 거리에서 증기를 쏘는 큰 이점을 갖고 있다. 미세한 물방울로 분사된 증기는 화재 근처의 산소를 제거하기 때문에, 목재 화재에 특히 효과적이다. 다른 가능한 용도는 약물을 흡입하는 데 어려움이 있는 사람들을 위한 약제 스프레이 및 방향제 등이다.

그림 6. 폭탄먼지벌레에 근거한, 미세방울의 물과 증기를 분사하기 위한 실험용 시제품.


진화론의 장애물

연소와 관련된 모든 시스템들은 연소가 위험하므로 매우 신중하게 설계해야 한다! 그리고 연소 시스템은 모든 설계된 부품들과 물질들이 제 위치에 있지 않으면, 작동하지 않을 것이므로, 이는 명백히 ‘한 요소도 제거 불가능한 복잡성(환원 불가능한 복잡성, irreducible complexity)의 한 사례이다. 즉, 이것은 하나씩 단계적으로 진화할 수 없었음을 의미하는데, 부분적으로 진화된 시스템은 아무런 장점도 제공하지 않기 때문이다. 사실 그것은 생물의 생존에 방해가 되고, 자연선택에 의해 제거될 것이다!

폭탄먼지벌레 연구에서 발생하는 질문 중 답변하지 않은 몇 가지는 다음과 같다: 촉매제는 어떤 형태인가? 폭탄먼지벌레는 공격 방향을 어떻게 감지하는가? 배출을 지시하는 가동 포탑은 어떻게 작동하는가? 과산화수소와 하이드로퀴논 화학물질은 어떻게 생산되는가? 그러나 우리가 이해하고 있는 폭탄먼지벌레의 화학작용, 연소 메커니즘 및 트윈 밸브 시스템의 상호 의존성만으로도, 그것이 뛰어난 공학적 설계임을 나타낸다!


Related Articles

The amazing bombardier beetle

Bombardier idea

Preliminary observations of the pygidial gland of the Bombardier Beetle, Brachinus sp.

Beetles … nature's workaholics


Further Reading

Design Features Questions and Answers


References and Notes

1. Eisner, T. and Aneshansley, D.J., Spray aiming in the bombardier beetle: photographic evidence, Proc. National Academy of Sciences (USA) 96(17): 9705–9709, 17 Aug 1999.

2. Beheshti, N. and McIntosh, A.C., The bombardier beetle and its use of a pressure relief valve system to deliver a periodic pulsed spray, Bioinspiration and Biomimetics (Inst of Physics), 2:57–64, 2007.

3. McIntosh, A.C., Combustion, fire, and explosion in nature—some biomimetic possibilities, Proc. IMechE Part C: J. Mechanical Engineering Science 221: 1157–1163, 1 Oct 2007.

4. McIntosh, A.C. and Beheshti, N., Insect inspiration, Physics World 21(4):29–31, 2008.

5. BBC Life, series 6 ‘Insects’, Martha Holmes, Rupert Barrington, David Attenborough (narrator), 2009.


*이 글은 저자인 앤디 매킨토시(Andy McIntosh) 교수가 Dr Stuart Burgess와 공동으로 저술하고 Brian Edwards가 편집한 책 “Wonders of Creation: Design in a fallen world(경이로운 창조: 타락한 세상에서의 설계)”(Creation.com/s/10-2-627 (NZ, UK, SA) 및 creation.com/10-2-661(AU, US, CA))에서 저자가 기여한 부분을 각색한 것이다.

*ANDY McINTOSH Ph.D., D. Sc. Dr McIntosh is Emeritus Professor of Thermodynamics at the University of Leeds, UK where he has lectured and researched in combustion theory, aerodynamics, mathematics and engineering.

His work has also included investigations into the fundamental link between thermodynamics and information. He speaks and writes widely on origins and has authored or co­authored several creationist books. For more: creation.com/andy­mcintosh.


*관련기사 : 초당 1000번 독물 발사, 폭탄먼지벌레의 ‘기관총 분사’ (2015. 5. 6. 한겨레)

http://ecotopia.hani.co.kr/282995


*참조 : 딱정벌레, 진화론자들을 어리석게 보이도록 만드는 것

http://creation.kr/Mutation/?idx=1289749&bmode=view

폭격수 딱정벌레를 모방한 새로운 분무기

https://creation.kr/animals/?idx=1291021&bmode=view

폭격수 딱정벌레

https://creation.kr/animals/?idx=1290921&bmode=view

항공산업에서 폭격수 딱정벌레를 연구한다.

https://creation.kr/IntelligentDesign/?idx=1291586&bmode=view

하나님의 놀라운 창조에 대한 증거들

https://creation.kr/animals/?idx=1290916&bmode=view

바다의 폭격수 딱정벌레

https://creation.kr/animals/?idx=1290978&bmode=view

부서지지 않는 딱정벌레는 과학자들을 놀라게 한다.

http://creation.kr/animals/?idx=5234648&bmode=view

딱정벌레에서 발견된 기어는 설계를 외치고 있다.

http://creation.kr/animals/?idx=1757472&bmode=view

세계에서 가장 힘 센 생물체에 숨겨진 미스터리 : 습도에 반응하여 색깔을 변화시키는 헤라클레스 딱정벌레

http://creation.kr/animals/?idx=1291028&bmode=view

개, 올빼미, 딱정벌레를 모방하라 : 생체모방공학은 우리의 삶을 증진시킬 것이다.

http://creation.kr/animals/?idx=1291294&bmode=view

놀라운 보석 딱정벌레

http://creation.kr/animals/?idx=1291014&bmode=view

가장 밝고 하얀 곤충

http://creation.kr/animals/?idx=1291000&bmode=view

아름다운 파란색의 딱정벌레, 새, 그리고 나비들

http://creation.kr/animals/?idx=1290988&bmode=view

딱정벌레, 진화론자들을 어리석게 보이도록 만드는 것

http://creation.kr/Mutation/?idx=1289749&bmode=view

개, 올빼미, 딱정벌레를 모방하라 : 생체모방공학은 우리의 삶을 증진시킬 것이다. 

http://creation.kr/animals/?idx=1291294&bmode=view

5천만 년 전(?) 딱정벌레 화석에 남겨져 있는 색깔 자국

http://creation.kr/YoungEarth/?idx=1289332&bmode=view

3억 년 전의 현대적인 딱정벌레의 발견으로 진화론자들은 당황하고 있었다.

http://creation.kr/LivingFossils/?idx=1294822&bmode=view

딱정벌레들은 공룡과 함께 살았다. : 2억5천만 년(?) 전으로 올라간 딱정벌레들의 출현 연대

http://creation.kr/Circulation/?idx=1294927&bmode=view

5200만 년(?) 전의 한 딱정벌레는 오늘날과 너무도 유사했다 : 개미와 공생 관계도 동일했다.

http://creation.kr/LivingFossils/?idx=1294796&bmode=view

9천9백만 년 전의 호박 속 딱정벌레는 오늘날과 동일했다. : 또 다른 살아있는 화석은 진화론적 설명을 부정한다.

http://creation.kr/LivingFossils/?idx=1757555&bmode=view

쇠똥구리는 자기 몸무게의 1,141 배를 끌 수 있다.

https://creation.kr/animals/?idx=1291074&bmode=view

쇠똥구리 : 초원을 보존하는 작은 일꾼

https://creation.kr/animals/?idx=1291206&bmode=view


거미와 개미 : 가라앉지 않는 금속 구조에 영감을 준다

https://creation.kr/animals/?idx=13711402&bmode=view

잘려지지 않는 놀라운 구조 : 자연의 설계는 새로운 슈퍼 소재에 영감을 준다.

http://creation.kr/Plants/?idx=5191540&bmode=view

생체모방공학의 최근 소식 : 리그닌, 가오리, 초파리를 모방한 공학기술 

http://creation.kr/animals/?idx=1757476&bmode=view

생체모방공학과 경이로운 세포에 관한 새로운 소식들 

http://creation.kr/LIfe/?idx=1291314&bmode=view

생체모방공학 분야는 지속적으로 확장되고 있다 : 뼈, 힘줄, 곰팡이, 법랑질, 효모, 곤충, 홍합, 말벌, 파리매...

http://creation.kr/animals/?idx=1291210&bmode=view

탁월한 방법으로 물을 모으고 있는 사막식물 대황 : 이 식물을 모방하여 건조지역의 지면피복재를 개발한다.

http://creation.kr/Plants/?idx=1291451&bmode=view

박쥐의 비행을 모방한 최첨단 비행 로봇의 개발

http://creation.kr/animals/?idx=1291213&bmode=view

뼈의 미세구조를 모방하여 개량된 균열에 강한 강철

http://creation.kr/Human/?idx=1291548&bmode=view

생체모방공학을 통한 강렬한 희망 1, 2 : 계속 발견되고 있는 생물들의 경이로운 능력들

http://creation.kr/animals/?idx=1291126&bmode=view

http://creation.kr/Plants/?idx=1291380&bmode=view

차세대 리더는 식물과 동물이다! 

http://creation.kr/animals/?idx=1291131&bmode=view

단풍나무 씨앗을 모방한 소형 비행 로봇 

http://creation.kr/Plants/?idx=1291384&bmode=view

탁월한 방법으로 물을 모으고 있는 사막식물 대황 : 이 식물을 모방하여 건조지역의 지면피복재를 개발한다. 

http://creation.kr/Plants/?idx=1291451&bmode=view

식충식물이 R&D 수상을 이끌다 : 생체모방공학의 새로운 기술들

http://creation.kr/Plants/?idx=1291385&bmode=view

자연이 38억 년 동안 연구개발을 했는가? : 생체모방공학의 계속되는 성공 - 해바라기, 규조류, 식물 의약품... 

http://creation.kr/Plants/?idx=1291293&bmode=view

개, 올빼미, 딱정벌레를 모방하라 : 생체모방공학은 우리의 삶을 증진시킬 것이다. 

http://creation.kr/animals/?idx=1291294&bmode=view

생체모방공학 소식으로 시작되는 한 해 

http://creation.kr/LIfe/?idx=1291295&bmode=view

계속되는 생체모방공학의 성공 : 반딧불이, 나무, 피부, DNA, 달팽이처럼 만들라. 

http://creation.kr/animals/?idx=1291138&bmode=view

큰부리새, 굴, 거미를 이용한 생체모방공학 

http://creation.kr/animals/?idx=1291140&bmode=view

생체모방공학의 여러 소식들 

http://creation.kr/Plants/?idx=1291401&bmode=view

먹장어, 도마뱀붙이, 잠자리의 생체모방공학 

http://creation.kr/animals/?idx=1291142&bmode=view

개구리 발바닥을 모방하라! : 더러운 곳과 물속에서도 사용할 수 있는 접착 테이프 

http://creation.kr/animals/?idx=1291145&bmode=view

나비의 날개 : 방수 옷에 영감을 불어넣다.

http://creation.kr/animals/?idx=1291154&bmode=view

생물권 전역에서 공학적 설계가 발견되고 있다. : 생체모방공학의 계속되는 행진 

http://creation.kr/animals/?idx=1291158&bmode=view

역공학이 밝혀낸 이상적 추진 방식. : 생물들의 유사한 공학적 구조는 우연(수렴진화)인가, 설계인가? 

http://creation.kr/animals/?idx=1291160&bmode=view

모든 발명에 영감을 주고 있는 생체모방공학 

http://creation.kr/animals/?idx=1291161&bmode=view

불가능해 보이는 일들을 수행하는 생물들 : 소금쟁이를 모방한 생체모방공학

http://creation.kr/animals/?idx=1827845&bmode=view

경이로운 공학 기술이 수백만 년의 자연적 과정으로? : 생체모방 공학자들의 논리적 오류 

http://creation.kr/animals/?idx=1291166&bmode=view

딱따구리, 혈액응고, 분자모터를 모방한 생체모방공학 

http://creation.kr/animals/?idx=1291167&bmode=view

생물들의 정교한 공학기술과 최적화. : 박쥐, 말벌, 물고기, 꿀벌, 개미, 얼룩말과 생체모방공학 

http://creation.kr/animals/?idx=1291170&bmode=view

문어의 피부를 모방한 최첨단 위장용 소재의 개발.

http://creation.kr/animals/?idx=1291174&bmode=view

위장의 천재 문어는 피부로 빛을 감지하고 있었다! : 로봇 공학자들은 문어의 팔은 모방하고 있다. 

http://creation.kr/animals/?idx=1291184&bmode=view

생체모방공학의 새로운 뉴스들.

http://creation.kr/animals/?idx=1291188&bmode=view

생물들의 놀라운 기술과 생체모방공학 : 이러한 기술들이 모두 우연히 생겨났을까? 

http://creation.kr/LIfe/?idx=1291307&bmode=view

말벌의 독이 항암제? 

http://creation.kr/animals/?idx=1291189&bmode=view

깡충거미에서 영감을 얻은 마이크로-로봇 눈.

http://creation.kr/animals/?idx=3635694&bmode=view

해면동물에 들어있는 놀라운 설계

https://creation.kr/animals/?idx=6875360&bmode=view


출처 : Creation 42(2):12–15, April 2020.

주소 : https://creation.com/bombardier-beetle

번역 : 이종헌




미디어위원회
2022-12-19

거미와 개미 : 가라앉지 않는 금속 구조에 영감을 준다

(Spiders and Ants inspire an unsinkable metal structure)

Phillip Robinson


     “가라앉지 않는 배, 구멍이 뚫린 후에도 여전히 물에 뜨는 구명 장치, 바다에서 장기간 떠있는 전자 모니터링 장치” 등을 만드는 것을 상상할 수 있는가?[1] 이것들은 새로운 초소수성(superhydrophobic, water-repellent) 금속 구조를 만든 로체스터 대학(University of Rochester) 연구팀의 궁극적인 목표이다.[2]

.수중에서 공기 방울이 있는 잠수종거미


그들의 설계는 두 개의 작은 생물에서 영감을 받았다. 하나는 특수 제작된 수중 거미집에 기포를 가져오는 잠수종거미(diving bell spiders, Argyroneta aquatic, 물거미)였다. 두 번째는 붉은불개미(red imported fire ant, Solenopsis invicta)였는데, 뗏목을 조립하는 형태로 그들의 몸을 서로 연결하여, 방수 구조를 만듦으로써, 물 위에 떠 있는다.(3) 두 생물 모두 그들의 초소수성 몸체로 둘러싸인 영역에 공기를 가두어, 잠수를 하더라도 공기가 빠져나갈 수 없다. 실제로 새로운 금속 구조는 물에 잠긴 경우에도, 동일하게 공기를 유지할 수 있는데, 이것이 성공의 열쇠이다. 

.붉은불개미 뗏목은 그들의 소수성 몸체 표면 사이에 공기가 갇혀 있기 때문에, 나뭇가지에 의해 눌려도 가라앉지 않는다. 


레이저를 사용하여, 공기를 가두는 복잡한 마이크로 및 나노 스케일 패턴을 갖는 두 개의 작은 알루미늄 판의 표면을 식각(etch)하였다. 그런 다음 두 개의 판을 안쪽으로 향하게 배치하여, 에칭이 외부 마모에 노출되지 않도록 했다. 또한 그 판들은 그것들 사이에 공기를 가두고 유지하기 위해, 서로 정확한 거리에 있었다. “초소수성 표면은 구조물을 강제로 물에 잠기게 했을 때에도, 물이 격실로 들어가는 것을 막아줄 것이다.” 심지어 두 달 동안 무게를 가하여 눌러 놓았는데도, 무게를 제거했을 때, 즉시 수면으로 떠올랐다. 또한 연구팀은 그 구조물에 여러 번 구멍을 냈지만, 식각된 초소수성 표면으로 인해, 여전히 공기를 가두어 구조물을 떠있도록 했다.

이 새로운 구조물은 수많은 곳에 적용할 수 있을 것으로 보이며, 그들 중 많은 것들이 선박 산업의 안전을 향상시킬 수 있다. 물론 그러한 구조에 대한 영감은 이미 설계되고 만들어진 생물들에서 비롯된 것이었다. 이것은 그들의 창조자에 대해 많은 것을 말해준다!


.공기를 가두기 위해서 정확한 거리에서 플라스틱 지주로 결합되어 있는, 두 개의 초소수성 금속 판(disc)이 물 위에 떠 있다. 구멍을 뚫거나, 수 주 동안 물속에 담가두었는데도, 가라앉지 않았다.  

.왼쪽의 판(disc)은 식각 처리되지 않아 뜰 수 없다. 오른쪽 판은 공기를 가두기 위해 식각 패턴으로 처리된 것으로, 의도적으로 무게가 실렸음에도 불구하고, 일단 무게가 제거되면, 즉시 표면으로 떠올랐다.


Related Articles

Spiderweb stickiness secret

Hot spider silk

Spectacular spider stickiness

Spider silk: both strong and smart

Ants—swarm intelligence

Ants find their way by advanced mathematics

Startling stickiness: How ants and bees adhere with amazing machinery

Ants: the incredible heavy-lifting champions


Further Reading

Design Features Questions and Answers


References and notes

1. Marcotte, B., Spiders and ants inspire metal that won’t sink; rochester.edu, 6 Nov 2019.

2. Zhan, Z. and five others, Highly floatable superhydrophobic metallic assembly for aquatic applications, ACS Appl. Mater. Interfaces 11(51):48512–48517, 6 Nov 2019.

3. Mlot, N.J. and two others, Fire ants self-assemble into waterproof rafts to survive floods, PNAS 108(19):7669–7673, 10 May 2011.


*참조 : 잘려지지 않는 놀라운 구조 : 자연의 설계는 새로운 슈퍼 소재에 영감을 준다.

http://creation.kr/Plants/?idx=5191540&bmode=view

생체모방공학의 최근 소식 : 리그닌, 가오리, 초파리를 모방한 공학기술 

http://creation.kr/animals/?idx=1757476&bmode=view

생체모방공학과 경이로운 세포에 관한 새로운 소식들 

http://creation.kr/LIfe/?idx=1291314&bmode=view

생체모방공학 분야는 지속적으로 확장되고 있다 : 뼈, 힘줄, 곰팡이, 법랑질, 효모, 곤충, 홍합, 말벌, 파리매...

http://creation.kr/animals/?idx=1291210&bmode=view

탁월한 방법으로 물을 모으고 있는 사막식물 대황 : 이 식물을 모방하여 건조지역의 지면피복재를 개발한다.

http://creation.kr/Plants/?idx=1291451&bmode=view

박쥐의 비행을 모방한 최첨단 비행 로봇의 개발

http://creation.kr/animals/?idx=1291213&bmode=view

뼈의 미세구조를 모방하여 개량된 균열에 강한 강철

http://creation.kr/Human/?idx=1291548&bmode=view

생체모방공학을 통한 강렬한 희망 1, 2 : 계속 발견되고 있는 생물들의 경이로운 능력들

http://creation.kr/animals/?idx=1291126&bmode=view

http://creation.kr/Plants/?idx=1291380&bmode=view

차세대 리더는 식물과 동물이다! 

http://creation.kr/animals/?idx=1291131&bmode=view

단풍나무 씨앗을 모방한 소형 비행 로봇 

http://creation.kr/Plants/?idx=1291384&bmode=view

탁월한 방법으로 물을 모으고 있는 사막식물 대황 : 이 식물을 모방하여 건조지역의 지면피복재를 개발한다. 

http://creation.kr/Plants/?idx=1291451&bmode=view

식충식물이 R&D 수상을 이끌다 : 생체모방공학의 새로운 기술들

http://creation.kr/Plants/?idx=1291385&bmode=view

자연이 38억 년 동안 연구개발을 했는가? : 생체모방공학의 계속되는 성공 - 해바라기, 규조류, 식물 의약품... 

http://creation.kr/Plants/?idx=1291293&bmode=view

개, 올빼미, 딱정벌레를 모방하라 : 생체모방공학은 우리의 삶을 증진시킬 것이다. 

http://creation.kr/animals/?idx=1291294&bmode=view

생체모방공학 소식으로 시작되는 한 해 

http://creation.kr/LIfe/?idx=1291295&bmode=view

계속되는 생체모방공학의 성공 : 반딧불이, 나무, 피부, DNA, 달팽이처럼 만들라. 

http://creation.kr/animals/?idx=1291138&bmode=view

큰부리새, 굴, 거미를 이용한 생체모방공학 

http://creation.kr/animals/?idx=1291140&bmode=view

생체모방공학의 여러 소식들 

http://creation.kr/Plants/?idx=1291401&bmode=view

먹장어, 도마뱀붙이, 잠자리의 생체모방공학 

http://creation.kr/animals/?idx=1291142&bmode=view

개구리 발바닥을 모방하라! : 더러운 곳과 물속에서도 사용할 수 있는 접착 테이프 

http://creation.kr/animals/?idx=1291145&bmode=view

나비의 날개 : 방수 옷에 영감을 불어넣다.

http://creation.kr/animals/?idx=1291154&bmode=view

생물권 전역에서 공학적 설계가 발견되고 있다. : 생체모방공학의 계속되는 행진 

http://creation.kr/animals/?idx=1291158&bmode=view

역공학이 밝혀낸 이상적 추진 방식. : 생물들의 유사한 공학적 구조는 우연(수렴진화)인가, 설계인가? 

http://creation.kr/animals/?idx=1291160&bmode=view

모든 발명에 영감을 주고 있는 생체모방공학 

http://creation.kr/animals/?idx=1291161&bmode=view

불가능해 보이는 일들을 수행하는 생물들 : 소금쟁이를 모방한 생체모방공학

http://creation.kr/animals/?idx=1827845&bmode=view

경이로운 공학 기술이 수백만 년의 자연적 과정으로? : 생체모방 공학자들의 논리적 오류 

http://creation.kr/animals/?idx=1291166&bmode=view

딱따구리, 혈액응고, 분자모터를 모방한 생체모방공학 

http://creation.kr/animals/?idx=1291167&bmode=view

생물들의 정교한 공학기술과 최적화. : 박쥐, 말벌, 물고기, 꿀벌, 개미, 얼룩말과 생체모방공학 

http://creation.kr/animals/?idx=1291170&bmode=view

문어의 피부를 모방한 최첨단 위장용 소재의 개발.

http://creation.kr/animals/?idx=1291174&bmode=view

위장의 천재 문어는 피부로 빛을 감지하고 있었다! : 로봇 공학자들은 문어의 팔은 모방하고 있다. 

http://creation.kr/animals/?idx=1291184&bmode=view

생체모방공학의 새로운 뉴스들.

http://creation.kr/animals/?idx=1291188&bmode=view

생물들의 놀라운 기술과 생체모방공학 : 이러한 기술들이 모두 우연히 생겨났을까? 

http://creation.kr/LIfe/?idx=1291307&bmode=view

말벌의 독이 항암제? 

http://creation.kr/animals/?idx=1291189&bmode=view

깡충거미에서 영감을 얻은 마이크로-로봇 눈.

http://creation.kr/animals/?idx=3635694&bmode=view


출처 : Creation 42(4):55, October 2020

주소 : https://creation.com/spiders-ants-boat-design

번역 : 이종헌

미디어위원회
2022-12-04

박쥐가 밤에 외식을 할 때 수행하는 일들

(When Bats Dine Out at Night)

by James J. S. Johnson, J.D., TH.D.


     박쥐는 타락한 세계에서 신비롭고 놀라운 방법으로 먹이의 포획하는 포유류이다.[1] 박쥐는 대부분 야행성으로 해질 무렵에 공중 사냥을 시작하기 때문에, 그들의 야간 사냥 습관은 종종 사람들에게 잘 관측되지 않는다.[1, 2]

과학자들은 박쥐의 소화 부산물을 통해서 박쥐가 어떤 먹이를 선호하는지를 식별할 수 있다.[2] 그러나 잡식성인 박쥐 식단의 메뉴를 검토하는 것과는 별개로, 박쥐가 반향정위(echolocation)를 사용하여 먹이를 빠르게 사냥하는 방법은 정말로 경이로워 보인다.[3] 발사된 후 되돌아오는 초음파를 이용하여, 먹이를 찾고, 포획하는 데에 필요한, 박쥐의 일곱 가지 중요한 요소들과 실시간 도전을 살펴보자.


첫째, 박쥐는 거리를 고려해야 한다.

박쥐의 초음파는 목표물로 향하여 외부로 나갔다가, 다시 귀로 되돌아올 수 있을 정도로 강해야만 한다. 하지만 소리는 공기를 통과하여 이동할 때, 특히 주파수가 높을 때, 빠르게 에너지를 잃는다. 그래서 반향정위는 단지 짧은 범위에서만 작동된다.[4]


둘째, 초음파의 볼륨도 계산해야 한다. 큰갈색박쥐(big brown bats)는 구급차 사이렌과 같은 138데시벨의 초음파를 내보낸다. 다른 박쥐들은 전기톱과 같은 110데시벨로 비명을 지른다. 고맙게도 이러한 소음들은 인간의 청각 범위를 넘어선다.[4, 5]


셋째, 속도도 중요하다. 각 초음파 호출/메아리 쌍은 스냅샷(snapshot)에 해당하는 소리이다. 이러한 일련의 스냅샷은 영화를 보는 것처럼, 충분히 빠르게 업데이트(및 해석)되어야 한다. 그렇지 않으면, 파리, 모기, 말벌, 날도래, 나방, 귀뚜라미, 개구리, 작은 새, 또는 지표면 근처의 물고기와 같은 먹이들은 도망치고 탈출할 수 있다.[4, 6]


넷째, 방출된 초음파는 표적 먹이의 특정 신체 부위에서 튕겨지기 때문에, 박쥐는 1 또는 2 옥타브의 음파 주파수를 커버해야 한다. 박쥐의 초음파 데이터 분석 소프트웨어/하드웨어 시스템은 이러한 실시간 데이터를 해석하여, 대상의 물리적 형태와 변화하는 위치에 대한 상세한 이미지를 생성해야 한다.[4, 5]


다섯째, 박쥐가 날 때(복잡한 움직임의 능동적인 사례 중 하나), 반복적인 음파 탐지기는 목표물을 추적해야 하며, 이는 복잡한 움직임의 또 다른 능동적인 사례이다.[6] 포획 거리가 짧아짐에 따라 사냥감의 항시 변화하는 위치를 정확하게 조정해야 하며, 중복되는 초음파와 메아리의 왜곡된 "흐려짐"을 피할 수 있을 만큼, 충분히 분리되어야 한다.

박쥐는 초음파의 되돌아오는 시간으로부터 공간을 추정해야 하며, 같은 거리에 있는 두 물체에서 돌아오는 메아리가 동일한 지연 후에 도착하기 때문에, 같은 물체처럼 들릴 수도 있기 때문에, 이를 고려해야 한다.[4]


여섯째, 초음파 버전의 위장을 구별해야 한다. 모기나 파리와 같은 작은 먹이감들은 나뭇잎이나 나무껍질과 같은 더 큰 배경(레이더 채프(chaff) 같은)으로 인해 감추어질 수 있다.[4] 


일곱번째, 박쥐는 무리를 지어 살고, 종종 무리를 지어 사냥한다. 따라서 박쥐는 자신의 먹이 추적에 집중하기 위해, 자신의 초음파의 반향 소리 데이터를 다른 박쥐의 소리와 정보적으로 구별해야 한다. 하지만, 다른 박쥐들의 음파탐지기 데이터들을 무시할 수는 없다. 그렇지 않으면 박쥐들은 사냥을 하면서 서로 충돌할 것이다.[1, 4]


물론 더 많은 것들이 있지만, 이것은 박쥐가 외부 정보를 적극적으로 획득하면서(지속적인 환경 추적을 통해), 먹이감을 포획하는 "단순한" 기법이다. 이러한 기법은 가장 똑똑한 사람이 만든 초음파 탐지장치보다 훨씬 더 복잡하고 정교한 생물공학적 기법으로 보인다. 이러한 반향정위가 무작위적인 돌연변이로 우연히 생겨날 수 있었을까?

이것은 창조주의 초월적 지혜와 설계를 가리키는 것이다.(요한복음 1:1~3) 


References

1. The author visited the “bat bridge” (Congress Avenue Bridge) in Austin, Texas, where up to 1.5 million Mexican free-tailed bats literally hang out thereunder in North America’s largest urban bat colony. These summer migrants energetically emerge at dusk to hunt mosquitoes and other insects along the Colorado River.

2. Like moles, the habits of bats are difficult to observe (Isaiah 2:20). Bat diets are better known now by scrutinizing their feces (guano) at surprising levels of detail, including recognizing DNA of digested prey. See Jones, P. L. et al. 2020. Sensory ecology of the frog-eating bat, Trachops cirrhosus, from DNA metabarcoding and behavior. Behavioral Ecology. 31 (6): 1420-1428.

3. Visit ICR.org/cet for more information on this engineering-based biological model.

4. Yong, E. 2022. An Immense World: How Animal Senses Reveal the Hidden Realms Around Us. New York: Random House, 249-254, quotes from 248-249, 252.

5. Sherwin, F. Bat Echolocation Defies Evolutionary Explanations. Creation Science Update. Posted on ICR.org January 31, 2022; Sherwin, F. 2003. Bat-tastic Bats. Acts & Facts. 32 (10).

6. Übernickel, K. et al. 2016. Sensory challenges for trawling bats: Finding transient prey on water surfaces. The Journal of the Acoustical Society of America. 139 (4): 1914-1922.

* Dr. Johnson is Associate Professor of Apologetics and Chief Academic Officer at the Institute for Creation Research.

Cite this article: James J. S. Johnson, J.D., Th.D. 2022. When Bats Dine Out at Night. Acts & Facts. 51 (11).


*관련기사 : 비행기술, 박쥐에게 배운다 (2011. 9. 14. 한겨레)

https://www.hani.co.kr/arti/science/science_general/496012.html

박쥐의 비행원리, 차세대 비행기 제작에 도움 (2015. 5. 1. SBS News)

https://news.sbs.co.kr/news/endPage.do?news_id=N1002956432

박쥐의 대단한 비행 실력, 날개 속에 답 있다 (2015. 5. 13. 동아사이언스)

https://www.dongascience.com/news.php?idx=6828

박쥐 비행의 비밀이 밝혀지다. 날개의 터치 센서로 기류 변화 감지 (2015. 5. 13. ScienceTimes)

https://www.sciencetimes.co.kr/news/%EB%B0%95%EC%A5%90-%EB%B9%84%ED%96%89%EC%9D%98-%EB%B9%84%EB%B0%80%EC%9D%B4-%EB%B0%9D%ED%98%80%EC%A7%80%EB%8B%A4/

4마리 한 조 비행 땐 박쥐 초음파 주파수 2배 넓어졌다 (2018. 5. 7. 경향신문)

https://m.khan.co.kr/environment/environment-general/article/201805072156005#c2b

박쥐의 장거리 비행 기록 (2022. 4. 26. SciencePlus)

https://thescienceplus.com/news/newsview.php?ncode=1065614845864514


*참조 : 박쥐의 음파탐지기는 창조를 가리킨다. 

http://creation.kr/animals/?idx=1290992&bmode=view

박쥐는 공기 역학적 우월성을 보여준다. 

http://creation.kr/animals/?idx=1291003&bmode=view

벌새와 박쥐는 빠른 비행에 특화되어 있었다.

http://creation.kr/animals/?idx=1291207&bmode=view

박쥐의 비행을 모방한 최첨단 비행 로봇의 개발

http://creation.kr/animals/?idx=1291213&bmode=view

일부 큰박쥐들이 색깔을 볼 수 있는 이유는?

http://creation.kr/Mutation/?idx=1289762&bmode=view

첨단레이더 '박쥐 초음파'

http://creation.kr/animals/?idx=1290924&bmode=view

진화론자들의 난제를 해결해 준 박쥐 화석? : 초기 박쥐들은 레이더 없이 날았다고?

http://creation.kr/animals/?idx=1291029&bmode=view

동물과 식물의 경이로운 기술들 : 거미, 물고기, 바다오리, 박쥐, 날쥐, 다년생 식물

http://creation.kr/animals/?idx=1291150&bmode=view

동물들의 새로 발견된 놀라운 특성들. : 개구리, 거미, 가마우지, 게, 호랑나비, 박쥐의 경이로움

http://creation.kr/animals/?idx=1291169&bmode=view

동물들은 생각했던 것보다 훨씬 현명할 수 있다 : 벌, 박쥐, 닭, 점균류에서 발견된 놀라운 지능과 행동

http://creation.kr/animals/?idx=1291204&bmode=view

동물들은 물리학 및 공학 교수들을 가르치고 있다. : 전기뱀장어, 사마귀새우, 박쥐의 경이로움.

http://creation.kr/animals/?idx=1291191&bmode=view

박쥐와 돌고래의 음파탐지 장치는 우연히 두 번 생겨났는가? : 진화론의 심각한 문제점 중 하나인 '수렴진화' 

http://creation.kr/Mutation/?idx=1289805&bmode=view

수렴진화의 허구성 : 박쥐와 돌고래의 반향정위 능력은 두 번 진화되었는가?

http://creation.kr/Mutation/?idx=1289809&bmode=view

돌고래와 박쥐의 유전적 수렴진화 : 200여 개의 유전자들이 우연히 동일하게 두 번 생겨났다고?

http://creation.kr/NaturalSelection/?idx=1290309&bmode=view

정글 귀뚜라미는 정교한 설계로 박쥐의 반향정위를 피한다.

http://creation.kr/animals/?idx=3968408&bmode=view

귀의 경이로운 복잡성이 계속 밝혀지고 있다 : 그리고 박쥐에 대항하여 방해 초음파를 방출하는 나방들. 

http://creation.kr/animals/?idx=1291187&bmode=view

왜 하나님은 크고 날카로운 이빨을 창조하셨는가? 

http://creation.kr/animals/?idx=1291124&bmode=view

쥐와 박쥐의 조상은 같을까?

http://creation.kr/animals/?idx=1290931&bmode=view

박쥐 진화 이론의 삼진아웃 

http://creation.kr/LivingFossils/?idx=1294747&bmode=view


출처 : ICR, 2022. 10. 31.

주소 : https://www.icr.org/article/when-bats-dine-out/

번역 : 미디어위원회

미디어위원회
2022-11-25

초파리 눈의 또 다른 경이

(Fruit Fly Jitters)

by Frank Sherwin, D.SC. (HON.) 


     연구자들은 어디서나 볼 수 있는 초파리(fruit flies, Drosophila)가 미세급속안구운동(microsaccades, 안구의 불수의적인 미세 떨림)이라고 불리는 놀라운 안구 운동을 수행하고 있는 것을 발견했다.

이것은 한 물체를 계속 응시할 때, 희미해지지 않는다는 것을 의미한다. 우리의 눈도 이러한 미세한 움직임을 진행하는데, "여러분의 시신경이 보고 있는 것에 완전히 순응하는 것을 막기 위해, 여러분 눈의 빛의 패턴에 충분한 다양성을 주고 있는 것이다."[1]

록펠러 대학의 뉴스 기사는 이렇게 언급하고 있었다 :

곤충들은 그들의 눈이 그들의 머리에 단단히 고정되어 있기 때문에, 이런 사치를 누리지 못한다. 하지만 새로운 한 연구는 초파리들이 머리를 움직이지 않고 시력을 조절하기 위해 다른 전략을 진화시켰다는 것을 보여주는데, 눈 안쪽의 망막(retinas)이 움직인다.[1]

창조론자들은 초파리는 그들 시력의 조정을 위해 다른 전략으로 만들어졌다고 생각하지만, 한 진화론자는 "움직이는 물체를 추적하는 능력은 파리와 인간에서 각각 독립적으로 진화되었다고 생각한다"고 말했다.[1] 파리와 인간은 구별되게 창조되었기 때문에, 눈의 종류가 매우 다르지만, 추적 능력과 같은 "유사한 능동적 전략"을 갖고 있는 것은 창조론자에게 놀라운 일이 아니다. 이것은 곤충과 인간이 알려지지 않은 공통조상으로부터 진화한 것이 아니라[2], 창조주가 공학적 원리를 사용하여 다른 생물들에서도 동일한 기능을 달성하도록 하셨기 때문이다.

과학자들이 수행했던 연구는 주요 세부사항을 파악하는 데에 최고 수준이었다.

초파리는 시각적 움직임을 원활하게 추적하기 위해 망막 근육을 사용한다. 이것은 망막 이미지를 안정화하고, 정지된 장면을 볼 때, 작은 단속성운동(saccades)를 수행하고 있음을 보여준다. 망막이 움직일 때, 시각적 수용 영역이 그에 따라 이동하고, 가장 작은 망막의 단속성 운동은 시신경을 활성화한다는 것을 보여준다.[3]

그러나, 진화론자들은 말장난과 같은 수렴진화(convergent evolution)에 의존하고 있었다. "초파리 망막과 척추동물 눈의 원활한 단속성운동의 유사성은 수렴진화의 주목할만한 예이다."[3] 수렴진화는 진화계통나무에서 멀리 떨어진 생물들 사이의 유사성을 설명하는데 사용된다. 이 이론은, 예를 들어, 유럽 팀버늑대(European Timber wolf)와 태즈메이니아 주머니늑대(Tasmanian marsupial wolf)가 대륙으로 분리됐음에도 불구하고, 왜 실질적으로 동일하게 보이는지를 설명하는데 사용된다. 고인이 된 톰 베델(Tom Bethell)이 말했듯이, 수렴성은 "어떤 유사성이 공통조상에 의한 결과라는 가정을 약화시킨다."[4]

창조주의 손길은 겉으로는 단순해 보이지만, 실제로는 매우 정교하게 설계된, 초파리의 눈에서도 보여지고 있는 것이다.

그러나 연구자들은 더 흥미로운 옵션을 즐기고 있었다: 이러한 작은 변동, 즉 시각도에서 단지 1도 정도로 약간만 망막을 움직이는 것은, 파리 시력의 해상도를 향상시킨다. 따라서 망막의 움직임은 사람의 눈에 있는 수억 개의 수용체와 비교하여, 눈 하나에 약 6000개의 광수용체만을 갖고 있는 초파리가 여전히 놀라울 정도로 잘 볼 수 있는 방법을 설명하는데 도움이 될 수 있다.[1]

이 놀라운 연구의 한 가지 이점은 "최근에 광학 공학자들은 곤충의 시각과 유사한, 센서의 작은 움직임을 도입함으로써, 카메라의 해상도를 높일 수 있는, 미래의 카메라를 설계하는 데에 도움이 될 수 있다“는 것이다.[1]

이것은 진화와는 아무런 상관이 없다. 오히려 인간이 하나님의 살아있는 창조물 속에 들어있는 놀라운 생체공학을 모방하려고 하는 것이다.


References

1. Maimon, G. Fruit flies move their retinas much like humans move their eyes. The Rockefeller University news release. Posted on rockefeller.edu October 26, 2022, accessed October 31, 2022.

2. Sherwin, F. To Study Human Brains, Evolutionists Studied...Ants. Creation Science Update. Posted on ICR.org November 8, 2021, accessed October 31, 2022.

3. Fenk, L. et al. Muscles that move the retina augment compound eye vision in Drosophila. Nature. Posted on nature.com October 26, 2022, accessed October 31, 2022.

4. Bethell, T. 2017. Darwin’s House of Cards. Discovery Institute Press. Seattle. 115.

* Dr. Sherwin is Science News Writer at the Institute for Creation Research. He earned an M.A. in zoology from the University of Northern Colorado and received an Honorary Doctorate of Science from Pensacola Christian College.


*참조 : 초파리의 계절에 따른 빠른 유전적 변화 : “적응 추적”은 진화가 아니라, 설계를 가리킨다.

https://creation.kr/Variation/?idx=11298959&bmode=view

초파리의 경이로운 비행 기술이 밝혀졌다

http://creation.kr/animals/?idx=4828231&bmode=view

초파리 : 진화의 증거에서 지적설계의 증거로

http://creation.kr/animals/?idx=1291073&bmode=view

초파리는 내부 나침반을 가지고 있었다. 그리고 언제나 반복되는 수렴진화 이야기!

http://creation.kr/animals/?idx=1291186&bmode=view

초파리에 들어있는 놀라운 설계 : 초파리는 천문항법을 사용하여 장거리 이동을 한다!

http://creation.kr/animals/?idx=1291225&bmode=view

초파리의 후각은 경이로운 나노 시스템으로 작동된다.

http://creation.kr/animals/?idx=2114262&bmode=view

초파리는 대진화를 보여주지 못했다.

http://creation.kr/Variation/?idx=1290361&bmode=view

초파리의 진화는 600 세대 후에도 없었다.

http://creation.kr/Mutation/?idx=1289814&bmode=view

한 종 내의 소진화는 예스, 종들 사이의 대진화는 노! : 기생벌의 공격은 초파리를 진화시킬 수 있었을까?

http://creation.kr/Mutation/?idx=1289765&bmode=view

초파리의 유전자 연구는 창조를 확증하고 있다. 

http://creation.kr/IntelligentDesign/?idx=1291655&bmode=view

초파리 전사체의 초고도 복잡성

http://creation.kr/IntelligentDesign/?idx=1291734&bmode=view

생물의 뇌들이 모두 우연히? : 딱따구리, 초파리, 사람의 뇌

http://creation.kr/animals/?idx=3069629&bmode=view

생물에서 발견되는 초고도 복잡성의 기원은? : 나방, 초파리, 완보동물, 조류와 포유류의 경이로움

http://creation.kr/animals/?idx=1291208&bmode=view


사마귀새우의 경이로운 눈은 진화론을 거부한다 : 16종류의 광수용체를 가진 초고도 복잡성의 눈이 우연히?

http://creation.kr/animals/?idx=1291171&bmode=view

깡충거미에서 영감을 얻은 마이크로-로봇 눈.

http://creation.kr/animals/?idx=3635694&bmode=view

물 위를 살펴볼 수 있는 상자해파리의 눈 : 4가지 형태의 24개 눈을 가진 해파리가 원시적 생물?

http://creation.kr/animals/?idx=1291162&bmode=view

상자해파리는 사람의 눈처럼 물체를 구별한다.

http://creation.kr/animals/?idx=1291006&bmode=view

거울 달린 물고기의 눈은 창조를 가리킨다. 

http://creation.kr/animals/?idx=1291044&bmode=view

관 모양의 회전하는 물고기 눈은 진화를 거부한다. 

http://creation.kr/animals/?idx=1291046&bmode=view

놀랍다! 심해 물고기는 색깔을 볼 수 있다.

http://creation.kr/animals/?idx=2803410&bmode=view

고성능 야간 카메라인 도마뱀붙이의 눈

http://creation.kr/animals/?idx=1291050&bmode=view

사마귀새우의 경이로운 눈은 DVD 플레이어에 영감을 불어넣고 있다

http://creation.kr/animals/?idx=1291061&bmode=view

바다가재의 눈 : 놀라운 기하학적 디자인

http://creation.kr/animals/?idx=1290968&bmode=view

순록의 눈이 겨울에 파란색으로 변하는 이유는?

http://creation.kr/animals/?idx=1291214&bmode=view

박테리아의 놀라운 빛 감지 능력 : 렌즈와 같은 세포

http://creation.kr/LIfe/?idx=1291303&bmode=view

삼엽충의 고도로 복잡한 눈! 

http://creation.kr/Circulation/?idx=1295059&bmode=view

진화론을 난처하게 하는 삼엽충의 눈

http://creation.kr/Circulation/?idx=1294849&bmode=view

초기(?) 생물 삼엽충에 들어있는 놀라운 렌즈 공학

http://creation.kr/animals/?idx=1290997&bmode=view

캄브리아기에서 고도로 발달된 새우 눈이 발견되었다 : 3,000 개의 겹눈을 가진 생물이 하등한 동물인가? 

http://creation.kr/Circulation/?idx=1294984&bmode=view

16,000 개의 거대한 겹눈이 5억 년 전에 이미? : 아노말로카리스는 고도로 복잡한 눈을 가지고 있었다.

http://creation.kr/Circulation/?idx=1295026&bmode=view

거미불가사리는 피부로 본다.

http://creation.kr/animals/?idx=2936914&bmode=view

위장의 천재 문어는 피부로 빛을 감지하고 있었다! : 로봇 공학자들은 문어의 팔은 모방하고 있다.

http://creation.kr/animals/?idx=1291184&bmode=view

첨단광학도 흉내 못내는 '동물의 눈'

http://creation.kr/animals/?idx=1290923&bmode=view

간단한 눈은 진화를 지지하는가? : 로돕신, 광수용체 세포, 안점 등은 극도로 복잡하다.

http://creation.kr/animals/?idx=1291216&bmode=view

눈의 창조설계적 특성 

http://creation.kr/animals/?idx=1291222&bmode=view

보기 위해서는 눈 외에도 많은 것들이 필요하다

http://creation.kr/Human/?idx=1291502&bmode=view

진화가 눈을 만들 수 있을까? 절대 그럴 수 없다! 

http://creation.kr/Math/?idx=1288160&bmode=view

새우 눈의 설계 : 반사 나노기술은 새로운 광학 코팅에 영감을 주고 있다.

https://creation.kr/animals/?idx=9455333&bmode=view

거대한 겹눈을 가졌던 게에서 진화의 증거는 없었다.

https://creation.kr/LivingFossils/?idx=10573107&bmode=view


사람의 눈은 나노스케일의 해상도를 가지고 있다.

http://creation.kr/Human/?idx=1291535&bmode=view

사람의 눈은 단일 광자도 감지할 수 있었다. 

http://creation.kr/Human/?idx=1291542&bmode=view

눈의 각막은 생리학자들을 놀라게 만든다

https://creation.kr/Human/?idx=11905687&bmode=view

사람의 눈이 감정을 표현할 수 있게 된 이유는?

http://creation.kr/Human/?idx=1291550&bmode=view

완벽한 상을 맺기 위한 망막의 협동은 설계를 가리킨다. 

http://creation.kr/Human/?idx=1291500&bmode=view

보기 위해서는 눈 외에도 많은 것들이 필요하다.

http://creation.kr/Human/?idx=1291502&bmode=view

살아있는 조직으로 만들어진 카메라, 사람의 눈! “하나님의 형상대로 사람을 창조하시되”

http://creation.kr/Human/?idx=1291534&bmode=view

눈의 진화는 과학이 아니라 추측이다

http://creation.kr/Human/?idx=1291517&bmode=view


‘수렴진화’라는 마법의 단어 : 여러 번의 동일한 기적을 주장하는 진화론자들

http://creation.kr/Mutation/?idx=1289836&bmode=view

‘수렴진화’라는 도피 수단 : 유사한 구조가 우연히 여러 번 진화했다?

http://creation.kr/Variation/?idx=1290444&bmode=view

충수돌기가 수십 번씩 진화될 수 있었을까? : 수렴진화는 과학적 설명이 될 수 없다.

http://creation.kr/Mutation/?idx=1289863&bmode=view

육상식물의 리그닌이 홍조류에서도 발견되었다 : 리그닌을 만드는 유전자들, 효소들, 화학적 경로들이 우연히 두 번 생겨났다?

http://creation.kr/Variation/?idx=1290406&bmode=view

목재의 주성분인 리그닌이 해초에서 발견되었다. : 진화 시간 틀을 10억 년 전으로 수정? 수렴진화?

http://creation.kr/Variation/?idx=1290477&bmode=view

진화론의 가시가 되어버린 맹장 : 도를 넘은 수렴진화 : 맹장은 32번 독립적으로 진화했다?

http://creation.kr/Textbook/?idx=1289667&bmode=view

엘리트 수영선수들과 수렴진화 : 진화론의 수수께끼인 유선형 물고기

http://creation.kr/Mutation/?idx=1289739&bmode=view

고약한 냄새를 풍기는 독을 가진 새 : 두건새와 독개구리의 독은 두 번 진화

http://creation.kr/Mutation/?idx=1289810&bmode=view

자연이 스스로 산소 운반 시스템을 두 번씩이나 만들었을까? : 헤모글로빈 유전자들의 수렴진화

http://creation.kr/Mutation/?idx=1289812&bmode=view

연체동물은 신경계를 네 번 진화시켰다?

http://creation.kr/Mutation/?idx=1289818&bmode=view

여치와 포유류의 청각기관은 수렴진화 되었다? : 고도로 복잡한 귀가 우연히 두 번 생겨났다고?

http://creation.kr/Mutation/?idx=1289835&bmode=view

물고기의 수렴진화, 뇌의 수렴진화? 유선형 몸체와, 뇌의 배선망은 여러 번 진화했다?

http://creation.kr/Mutation/?idx=1289841&bmode=view

과도한 수렴진화는 진화론을 일그러뜨리고 있다 : 말미잘, 노래기, 유제류, 판다, 발광어, 백악기 조류, 육식식물

http://creation.kr/Mutation/?idx=1289864&bmode=view

곤충들 다리의 수렴진화 : 곤충들은 여섯 개의 다리로 여러 번 진화했다(?)

http://creation.kr/Variation/?idx=1290336&bmode=view

따뜻한 피를 가진, 온혈 물고기가 발견되었다! : 수렴진화가 해결책이 될 수 있을까?

http://creation.kr/Variation/?idx=1290461&bmode=view

구조색은 다양한 동물들에서 발견되고 있다 : 경이로운 나노구조가 여러 번 생겨날(수렴진화) 수 있었는가?

http://creation.kr/animals/?idx=1291215&bmode=view

수렴진화는 점점 더 많은 사례에서 주장되고 있다 : 독, 썬크림, 생체시계, 다이빙, 사회성, 경고신호...

http://creation.kr/Variation/?idx=1290463&bmode=view

화석 생물에서도 주장되고 있는 수렴진화 : 고대 물고기, 쥐라기의 활강 다람쥐, 사경룡과 수염고래

http://creation.kr/Circulation/?idx=1295073&bmode=view

우스꽝스러운 극도의 수렴진화 : 문어와 사람의 뇌, 메뚜기와 포유류의 치아, 동물들의 질주 능력

https://creation.kr/Variation/?idx=11113417&bmode=view

하나님이 설계하신 생물발광 : 발광 메커니즘이 독립적으로 수십 번씩 생겨날 수 있었는가?

http://creation.kr/Mutation/?idx=1289854&bmode=view

생물발광은 진화론을 기각시킨다.

http://creation.kr/NaturalSelection/?idx=1757444&bmode=view

어둠 속에서 빛을 발하는 생물들 : 생물발광과 진화론의 실패

http://creation.kr/animals/?idx=4347816&bmode=view

발광 박테리아와 오징어 사이의 팀워크는 진화하였는가? 

http://creation.kr/Mutation/?idx=1289788&bmode=view

박쥐와 돌고래의 음파탐지 장치는 우연히 두 번 생겨났는가? 진화론의 심각한 문제점 중 하나인 '수렴진화'

http://creation.kr/Mutation/?idx=1289805&bmode=view

수렴진화의 허구성 : 박쥐와 돌고래의 반향정위 능력은 두 번 진화되었는가?

http://creation.kr/Mutation/?idx=1289809&bmode=view

돌고래와 박쥐의 유전적 수렴진화 : 200여 개의 유전자들이 우연히 동일하게 두 번 생겨났다고?

http://creation.kr/NaturalSelection/?idx=1290309&bmode=view

화석 고래는 이미 초음파 기관을 가지고 있었다. 

http://creation.kr/Circulation/?idx=1295031&bmode=view

박쥐의 음파탐지기는 창조를 가리킨다. 

http://creation.kr/animals/?idx=1290992&bmode=view

귀의 경이로운 복잡성이 계속 밝혀지고 있다. 그리고 박쥐에 대항하여 방해 초음파를 방출하는 나방들.

http://creation.kr/animals/?idx=1291187&bmode=view

다윈의 특별한 어려움과 수렴진화 : 물고기의 전기기관은 독립적으로 6번 진화했는가?

http://creation.kr/Mutation/?idx=1289848&bmode=view

전기뱀장어의 놀라운 능력은 진화를 거부한다. 

http://creation.kr/animals/?idx=1291197&bmode=view

동물에서 발견되는 경이로운 능력들이 모두 우연히? : 도마뱀붙이, 전갈, 거미, 나비, 위버 새, 전기물고기의 경이로움

http://creation.kr/animals/?idx=1291173&bmode=view

전기 발생 생물에 대한 놀라운 사실들

http://creation.kr/Plants/?idx=1291413&bmode=view

동물들은 물리학 및 공학 교수들을 가르치고 있다. : 전기뱀장어, 사마귀새우, 박쥐의 경이로움.

http://creation.kr/animals/?idx=1291191&bmode=view

코끼리물고기의 주둥이는 진화를 증거하는가? : 놀랍도록 정교한 전기장 감지 기관이 우연히 두 번 진화했다?

http://creation.kr/Mutation/?idx=1289799&bmode=view

식물이 전기 신호를 보내고 있다는 충격적 증거! 

http://creation.kr/Plants/?idx=1291411&bmode=view


출처 : ICR, 2022. 11. 17.

주소 : https://www.icr.org/article/fruit-fly-jitters/

번역 : 미디어위원회





서울특별시 종로구 창경궁로26길 28-3

대표전화 02-419-6465  /  팩스 02-451-0130  /  desk@creation.kr

고유번호 : 219-82-00916             Copyright ⓒ 한국창조과학회

상호명 : (주)창조과학미디어  /  대표자 : 박영민

사업자번호 : 120-87-70892

통신판매업신고 : 제 2021-서울종로-1605 호

주소 : 서울특별시 종로구 창경궁로26길 28-5

대표전화 : 02-419-6484

개인정보책임자 : 김광